$u^{\scriptscriptstyle b}$

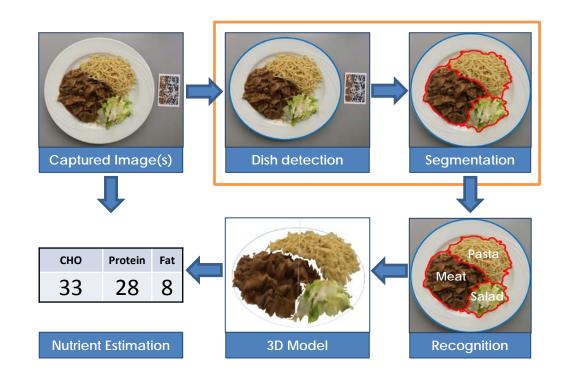
UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Dish Detection and Segmentation for Dietary Assessment on Mobile Phones

J. Dehais^{1,2}, M. Anthimopoulos¹, S. Mougiakakou^{1,3}

¹Diabetes Technology Research Group, ARTORG Center for Biomedical Engineering Research, Bern, Switzerland ²Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland ³Department of Endocrinology, Diabetes and Clinical Nutrition, Bern University Hospital – Inselspital, Bern, Switzerland



u^t

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

GoCARB System

Dish detection

u

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Input

An image of the meal inside an elliptic dish

Process

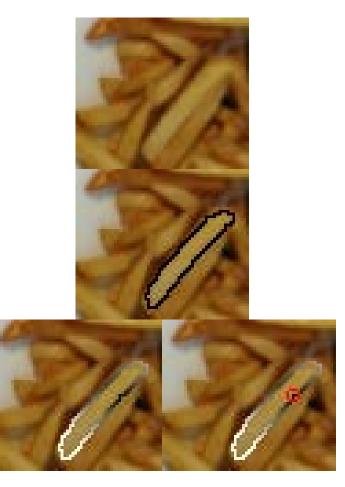
- 1. Preprocessing and Canny edge detection
- 2. Filtering of edge graph
- 3. Incremental RANSAC on edge segments

Output

A map with label codes for background and foreground Ellipse equation

Segmentation Seeded region growing

Input


"Seed regions": pixel sets

Process

- 1. Luminosity-dampened CIE94 colour distance
- 2. Iterative growth of the regions: Add the border pixel with the smallest distance to its region

Output

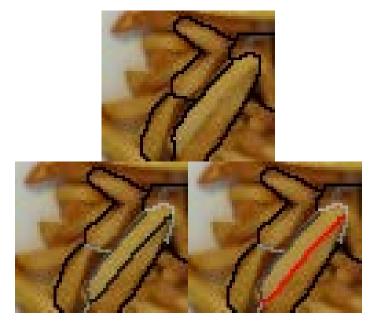
A map with label codes for background and food items

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Segmentation Statistical region merging

Input


Segmentation map

Process

- 1. Luminosity-dampened CIE94 colour distance
- 2. Iterative merging of the regions: Merge the two regions with the smallest distance between them

Output

A map with label codes for background and food items

D UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Segmentation

^b UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

1. Seeds

2. Region growing

3. Region Merging

Automatic

Semi-automatic

Evaluation - Procedure

UNIVERSITÄT Bern

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Dataset:

- 1600 Manually annotated images
- Single large round plate
- Food from the local hospital restaurant

Scoring:

• Average overlap between ground truth and result

•
$$NI_{SUM}(G = >R) = \frac{\sum_{i} Max_{j}(|R \cap G_{j}|)}{\sum_{i} |R_{i}|}$$

• $F_{sum} = 2 * NI_{SUm}(G = R) * NI_{SUm}(R = G)/(NI_{SUm}(G = R) + NI_{SUm}(R = G))$

U

^b UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Evaluation

Automatic	Average F _{sum} (%)	Time (s/image)
Proposed	88.2	0.45
Mean-shift [1]	87.5	2.1
Local Variation [2]	82.6	2.8
Ultrametric contours [3]	69.2	19
Semi-Automatic	Average F _{sum} (%)	Time (s/image)
Proposed	90.8	0.49
Flood fill	89.9	0.52

[1] Anthimopoulos, M.; Dehais, J.; Diem, P.; Mougiakakou, S., "Segmentation and recognition of multi-food meal images for carbohydrate counting," IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), (2013)

[2] Felzenszwalb, P. F., Huttenlocher, D. P.: Image segmentation using local variation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 98-104 (1998)

[3] Arbelaez P., Maire M., Fowlkes C., and Malik J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., vol.33, no.5, pp.898–916 (2011.)

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Thank you for your attention.

(Photo credit: Kem Sypher)

Dish detection Incremental RANSAC

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

- Each segment contains s edge points, s >>5
- 2. A conic can be generated from $k \leq 5$ segments

Incremental sampling:

- 1. Set k=1
- 2. Apply RANSAC Max consensus set size: n_k
- 3. If $n_k > n_{k-1}$ and k < 5
 - 1. Set k=k+1
 - 2. Repeat 2-3

Average accuracy: 99.1%

Segmentation Colour Distance

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

• CIE94
$$(L,a,b,L',a',b') = \sqrt{\Delta L_N^2 + \Delta C_N^2 + \Delta H_N^2}$$
, with

- $\Delta L_N = (L L'),$
- $\Delta C_{N} = (\sqrt{a^{2}+b^{2}} \sqrt{a'^{2}+b'^{2}})/(1+0.045\sqrt{a^{2}+b^{2}}),$

•
$$\Delta H_{N} = \sqrt{(a-a')^{2} + (b-b')^{2} - \Delta C_{N}^{2}/(1+0.015\sqrt{a^{2}+b^{2}})}$$

• dist $(L,a,b,L',a',b') = \sqrt{|\Delta L_N| + \Delta C_N^2 + \Delta H_N^2}$

Automatic	Av. F _{sum} (%)
RGB - Euclidian	61.1
CIE94	80.2
Proposed	88.2
Semi-Automatic	Av. F _{sum} (%)
Semi-Automatic RGB - Euclidian	Av. F_{sum} (%) 72.3

Segmentation Merging Distance

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

• Dist $(R_i, R_j) = \frac{\text{dist}(L_i, a_i, b_i, L_j, a_j, b_j)}{\sqrt{|edge_{i,j}|}}$, where

- L_i : Median L_p , p in R_i
- a_i, b_i : Average a_p, b_p, p in R_i

Merging Cost	Av. F _{sum} (%)
Color distance	85.8
Proposed	88.2

