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Dish detection

Input
An image of the meal inside an 
elliptic dish

Process
1. Preprocessing and

Canny edge detection
2. Filtering of edge graph
3. Incremental RANSAC on

edge segments

Output
A map with label codes for 
background and foreground
Ellipse equation



Input
“Seed regions”: pixel sets

Process
1. Luminosity-dampened CIE94 

colour distance
2. Iterative growth of the regions:

Add the border pixel with the 
smallest distance to its region

Output
A map with label codes for 
background and food items

Segmentation
Seeded region growing



Input
Segmentation map
Process
1. Luminosity-dampened CIE94 

colour distance
2. Iterative merging of the regions:

Merge the two regions with the 
smallest distance between them

Output
A map with label codes for 
background and food items

Segmentation
Statistical region merging



Segmentation

Automatic Semi-automatic

1. Seeds

2. Region growing

3. Region Merging



Evaluation - Procedure

Dataset:
• 1600 Manually annotated images
• Single large round plate
• Food from the local hospital restaurant

Scoring:
• Average overlap between ground truth and result

• NIsum G=>𝑅𝑅 =
∑i Maxj 𝑅𝑅∩𝐺𝐺j

∑i |Ri|

• Fsum =  2 ∗ NIsum G=>𝑅𝑅 *NIsum R=>G /(NIsum G=>𝑅𝑅 +NIsum R=>G )



Evaluation

Automatic Average Fsum (%) Time (s/image)

Proposed 88.2 0.45

Mean-shift [1] 87.5 2.1

Local Variation [2] 82.6 2.8

Ultrametric contours [3] 69.2 19

Semi-Automatic Average Fsum (%) Time (s/image)

Proposed 90.8 0.49

Flood fill 89.9 0.52
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[3] Arbelaez P., Maire M., Fowlkes C., and Malik J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., vol.33, 
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Thank you for your attention.
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Dish detection
Incremental RANSAC

1. Each segment contains s edge 
points,  s >>5

2. A conic can be generated from 
k <=5 segments

Incremental sampling:
1. Set k=1
2. Apply RANSAC

Max consensus set size: nk

3. If nk > nk-1 and k<5
1. Set k=k+1
2. Repeat 2-3

Average accuracy: 99.1%



• CIE94 L,a,b,L′,a′,b′ = ∆LN
2+∆CN

2+∆HN
2,with

• ∆LN= L−L′ ,

• ∆CN=( a2+b2− a′2+b′2)/(1+0.045 a2+b2),

• ∆HN= a−a′
2

+ b−b′
2
−∆CN

2/(1+0.015 a2+b2)

• dist L,a,b,L′,a′,b′ = |∆LN|+∆CN
2+∆HN

2

Segmentation
Colour Distance

Automatic Av. Fsum (%)

RGB - Euclidian 61.1

CIE94 80.2

Proposed 88.2

Semi-Automatic Av. Fsum (%)

RGB - Euclidian 72.3

CIE94 78.2

Proposed distance 90.8



• Dist(𝑅𝑅𝑖𝑖,𝑅𝑅𝑗𝑗)=
dist 𝐿𝐿𝑖𝑖,𝑎𝑎𝑖𝑖,𝑏𝑏𝑖𝑖,𝐿𝐿𝑗𝑗,𝑎𝑎𝑗𝑗,𝑏𝑏𝑗𝑗

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖,𝑗𝑗
, where

– 𝐿𝐿𝑖𝑖: Median 𝐿𝐿𝑝𝑝, p in 𝑅𝑅𝑖𝑖
– 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖: Average 𝑎𝑎𝑝𝑝,𝑏𝑏𝑝𝑝, p in 𝑅𝑅𝑖𝑖

Segmentation
Merging Distance

Merging Cost Av. Fsum (%)

Color distance 85.8

Proposed 88.2
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