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» Challenges in monitoring the energy
balance

* Why sensors?
» Detection and characterization of food
intake
- Hand gesture sensors
- Chewing sensors
- Swallowing sensors
- Characterization of ingestive behavior

 Conclusions and future directions



Energy balance
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Both Energy Intake (El) and Energy Expenditure (EE) are
hard to measure, especially in free living individuals



Energy balance

Measure heat production

Measure caloric
content of all
/ foods served
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e Most true

« Not a natural environment, not suitable for free living
« Affects EI and EE behavior



Energy balance

e Most methods for measuring energy balance are indirect

Energy Intake:
- self-report (diary.
multimedia diary, 24hr
recall, food frequency
questionnaires, etc.)

Energy expenditure:
- self-report (diary)
- indirect calorimetry
- DLW

- accelerometers
- heart rate monitors

- others
* reasonably accurate * mostly rely of self-report
« some approaches work well « not very accurate
for free living * high burden

There is room for improvement both in measuring
EE and EI!



Energy balance

« Most people do not understand the nature of body’s
energy balance
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T. Abdel-Hamid, F. Ankel, M. Battle-Fisher, B. Gibson, G. Gonzalez-Parra, M. Jalali, K. Kaipainen, N. Kalupahana, O. Karanfil, A.
Marathe, B. Martinson, K. McKelvey, S. N. Sarbadhikari, S. Pintauro, P. Poucheret, N. Pronk, Y. Qian, E. Sazonov, K. V. Oorschot, A.
Venkitasubramanian, and P. Murphy, “Public and health professionals’ misconceptions about the dynamics of body weight gain/loss,”
Syst. Dyn. Rev., vol. 30, no. 1-2, pp. 58-74, Jan. 2014.



Energy balance

« Most people do not understand the nature of body’s
energy balance
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Energy balance

« Most people do not understand the nature of body’s
energy balance

Fraction of subjects with correct
answer (total of 621 individuals)
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Syst. Dyn. Rev., vol. 30, no. 1-2, pp. 58-74, Jan. 2014.



Why sensors?

1. The commonly used self-report is notoriously inaccurate.

Energy intake of respondents in US National Health and Nutrition
Examination Survey from 1971-2012 was not physiologically
plausible for 67.3% of women and 58.7% of men - i.e. the number
of calories is “incompatible with life.” !

2. Self-report is subject to reporting and observation biases,
long-term compliance issues

3. The sensors enable real-time feedback
capabilities

1. E. Archer, G. A. Hand, and S. N. Blair, “Validity of U.S. Nutritional Surveillance: National Health and Nutrition Examination Survey
Caloric Energy Intake Data, 1971-2010,” PLoS ONE, vol. 8, no. 10, p. 76632, Oct. 2013.



Why sensors?
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1. E. Archer, G. A. Hand, and S. N. Blair, “Validity of U.S. Nutritional Surveillance: National Health and Nutrition Examination Survey
Caloric Energy Intake Data, 1971-2010,” PLoS ONE, vol. 8, no. 10, p. €76632, Oct. 2013.



Why sensors?

((Science — Measurement)

&

(Measurement — Sensor)) —

(Science — Sensor)

http://www.racollection.org.uk

Science is Measurement, 1879
Oil on canvas, 915 X 610 X 22 mm

Diploma Work given by Henry Stacy Marks, R.A., accepted 1879



e QGoals:

- Detection of food intake

- Characterization of ingestive
behavior (number of episodes,
ingestion rate, number of food
items, mass, etc.)

- Estimation of portion size and
energy intake
 |ndirect indicators of food
intake are commonly used

« Challenges include accuracy,

comfort and compliance
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« Hand-to-mouth gestures are

prevalent during food intake e
A proximity sensor can be N\
used to track hand-to-mouth
gestures RF proximity sensor
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P. Lopez-Meyer, Y. Patil, T. Tiffany, and E. Sazonov, “Detection of Hand-to-Mouth Gestures Using a RF Operated Proximity Sensor
for Monitoring Cigarette Smoking,” Open Biomed. Eng. J., vol. 9, pp. 41-49, Apr. 2013.



Hand gesture sensors

* |nertial sensors can be used to detect hand-to-
mouth gestures

* The limitation is that the sensor has to be turned
on/off manually

http://www.ces.clemson.edu/~ahoover/bite-counter/

Y. Dong, A. Hoover, J. Scisco, and E. Muth, “A New Method for Measuring Meal Intake in Humans via Automated Wrist Motion
Tracking,” Appl. Psychophysiol. Biofeedback, vol. 37, no. 3, pp. 205-215, Sep. 2012.



« Number of “bites” is correlated with mass of

Ingestion and energy intake
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Figure 2. Scatterplot of the relationship between bite count and automated self-administered 24-hour dietary recall (ASA24)

estimated kilocalories across all 2,975 eating activities (r—0.44; P<0.001).
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J. L. Scisco, E. R. Muth, and A. W. Hoover, “Examining the utility of a bite-count-based measure of eating activity in free-living human

beings,” J. Acad. Nutr. Diet., vol. 114, no. 3, pp. 464—469, Mar. 2014.



Chewing sensors

« Chewing is associated with intake of most solid foods and

can be used as indicator of food intake

FIG 6. The oral sensor is a dental arch, fas|
gauge sensitive 1o tongue pressure dunng swa

E. Stellar and E. E. Shrager, “Chews and swallows and the microstructure of eating,” Am. J. Clin. Nutr., vol. 42, no. 5 Suppl, pp. 973—
982, Nov. 1985.

O. Amft, “A wearable earpad sensor for chewing monitoring,” in 2010 IEEE Sensors, 2010, pp. 222-227.

S. PaBler, M. Wolff, and W.-J. Fischer, “Food intake monitoring: an acoustical approach to automated food intake activity detection
and classification of consumed food,” Physiol. Meas., vol. 33, no. 6, pp. 1073—-1093, 2012.

E. Sazonov and J. M. Fontana, “A Sensor System for Automatic Detection of Food Intake Through Non-Invasive Monitoring of
Chewing,” IEEE Sens. J., vol. 12, no. 5, pp. 1340 —1348, 2012.



Chewing sensors

« The sound of mastication (food crushing) has relation to
physical properties of the food, but little relevance to
energy content
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O. Amft, M. Stager, and G. Troster, “Analysis of chewing sounds for dietary monitoring,” UbiComp 2005, pp. 56—72, 2005.
S. PaRler, M. Wolff, and W.-J. Fischer, “Food intake monitoring: an acoustical approach to automated food intake activity detection
and classification of consumed food,” Physiol. Meas., vol. 33, no. 6, pp. 1073—-1093, 2012.



Chewing sensors

« The sound of mastication (food crushing) has relation to
physical properties of the food, but little relevance to
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Figure 5. (a) Accuracies for evaluation with records of familiar participants. An overall accuracy
of 79% was achieved. (b) Overall accuracies for evaluation with records of new participants. An
overall accuracy of 66% was achieved.

O. Amft, M. Stager, and G. Troster, “Analysis of chewing sounds for dietary monitoring,” UbiComp 2005, pp. 56—72, 2005.
S. PaRler, M. Wolff, and W.-J. Fischer, “Food intake monitoring: an acoustical approach to automated food intake activity detection
and classification of consumed food,” Physiol. Meas., vol. 33, no. 6, pp. 1073—-1093, 2012.



» The chewing sound could potentially be used to estimate

the ingested mass

Metric Foods
Mean (SD) Potato chips | Lettuce Apple
Bite weight W [g] 0.8(02) | 23(0.8) | 7.8(1.5)
Chews/Seq. (M) 26.9 (4.4) | 20.0 (3.3) | 14.9 (2.9)
Sound-hased recognition
Absolute error [g] 0.2 (0.1) 0.6 (0.2) | 1.4 (0.4)
Relative error [%] 277 (9.5) | 310 (5.5 | 194 (4.3
EMG detection
Absolute error [g] 0.2 (0.1) 0.6 (0.2) | 1.9 (1.1)
Relative error [ %] 26.5(9.0) | 28.9 (4.0) | 27.8 (14.6)
Sound-based rec. (inter-individual)
Absolute error [g] 0.2 (0.2) 0.8 (0.6) | 2.3 (1.8)
Relative error [%] 3.7 (30.6) | 40.2 (38.2) | 37.2 (37.1)
Constant weight"
Absolute error [g] 0.3 (0.1) 0.9 (0.3) | 3.3 (1.8)
Relative error [%] | 41.1 (25.8) | 50.5 (29.8) [ 62.2 (33.8)

“Average weight of 2nd and 3rd chewing sequence.

Chewing sensors

PERFORMANCE OF DIFFERENT BITE WEIGHT PREDICTION APPROACHES
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O. Amft, M. Kusserow, and G. Troster, “Bite Weight Prediction From Acoustic Recognition of Chewing,” Biomed. Eng. IEEE Trans.
On, vol. 56, no. 6, pp. 1663-1672, 2009.




Chewing sensors

ACCELEROMETER

v'detect when
people eat

v’how many
episodes

v’how long, how
much is ingested in
each episode

v'how many foods
are consumed

A) JAW MOTION SENSOR

\ ‘

B) PROXIMITY SENSOR

D) SMART PHONE

J. M. Fontana, M. Farooq, and E. Sazonov, “Automatic Ingestion Monitor: A Novel Wearable Device for Monitoring of Ingestive
Behavior,” IEEE Trans. Biomed. Eng., vol. Early Access Online, 2014.



Chewing sensors

24-hrs monitoring of ingestive behavior by AIM
* 12 subjects (6 male, 6 female)

« average age was 26.7y (SD £ 3.7)

« average BMI 24.39 kg/m2 (SD + 3.81)

e origins in 5 countries

Self-reported food intake (-1 no food intake; 1 food intake)
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Food intake prediction results for an average performance (89% in terms labeling
every 30s interval as a binary prediction of “food intake” or “no food intake”)

J. M. Fontana, M. Farooq, and E. Sazonov, “Automatic Ingestion Monitor: A Novel Wearable Device for Monitoring of Ingestive
Behavior,” IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1772-1779, Jun. 2014.



Chewing Sensors

« Jaw motion and chewing sound detection may fail at
detection of certain foods!




Swallowing monitors

* One of the most reliable ways to detect ingestion

SIZE 40 COPPER WIRE SHIELDED MICN-DPHONE WIRE
s : TABLE 4. HOURLY SWALLOWING RATES IN TWENTY SUBJECTS STUDIED

OVER A 24-hr PERIOD

<

AN /e
P mHW"'Ei " R A Mean Rates Standard Deviation
2 & Eating and drinkin 180 .
MICROPHONE r.*’ *"_[) '\'\ Sleeping ¢ 85‘2 Sf'o’
.. b W Other activity 235 11-4
CHANNEL IN SPONGE RUBBER SMALL-POVE SPONGE RUBBER Over-all rate 244 87

TABLE S. SWALLOWING INCIDENCE AND RATES DURING VARIOUS PERIODS OF EATING
AND DRINKING IN TWENTY SUBJECTS STUDIED OVER A 24-hr PERIOD

Activity Swailows Time (min) Hourly rate
Breakfast 376 109 207-0
Lgnch 373 14-2 157-6
Dinner 64-2 22:6 170-4
Between-meal snacks 65-2 22-5 1739

C. S. Lear and C. F. Moorrees, “Swallowing frequency; a detection system employing FM telemetry,” J. Dent. Res., vol. 45, no. 4, p. 1222, Aug.

1966.
C. S. C. Lear, J. B. Flanagan Jr., and C. F. A. Moorrees, “The frequency of deglutition in man,” Arch. Oral Biol., vol. 10, no. 1, pp. 83—99, IN13-

IN15, January-February 1965.




« A variety of approaches exists to detect
swallowing

Acoustical Magnetic Electrical Piezoelectric

O. Makeyev, P. Lopez-Meyer, S. Schuckers, W. Besio, and E. Sazonov, “Automatic food intake detection based on swallowing sounds,” Biomed.
Signal Process. Control, vol. 7, no. 6, pp. 649-656, Nov. 2012.

A. Kandori, T. Yamamoto, Y. Sano, M. Oonuma, T. Miyashita, M. Murata, and S. Sakoda, “Simple Magnetic Swallowing Detection System,” IEEE
Sens. J., vol. 12, no. 4, pp. 805-811, Apr. 2012.

M. Farooq, J. M. Fontana, and E. Sazonov, “A novel approach for food intake detection using electroglottography,” Physiol. Meas., vol. 35, no. 5,
p. 739, May 2014.

H. Kalantarian, N. Alshurafa, T. Le, and M. Sarrafzadeh, “Monitoring eating habits using a piezoelectric sensor-based necklace,” Comput. Biol.
Med., vol. 58, pp. 46-55, Mar. 2015.
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M. Farooq, J. M. Fontana, and E. Sazonov, “A novel approach for food intake detection using electroglottography,” Physiol. Meas., vol. 35, no. 5,

p. 739, May 2014.
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Distribution of the food intake detection accuracies
obtained from both EEG-based and acoustic-based models.



« Common problem: people do not like “collars”
« Monitoring of breathing may detect swallowing

apnea

Processing &

>
N,

woue|_|

Server p
Access \_ _, USB V4
Point ‘ 4
'

Processor
and Radio

1

Shaping Ckt.

I
[ &= ]
Piezo-resp. Belt
T
[ o <

AAAA Battery

Wearable Belt
Package (~20 gms )

Fig. 1. Wearable wireless food intake monitoring system with a
piczo-respiratory chest belt, signal shaping hardware, wireless
transceiver, processor, 900MHz wireless link, and a wireless

access point connected to a PC for out-of-body processing.

B. Dong and S. Biswas, “Wearable sensing for liquid intake monitoring via apnea detection in breathing signals,” Biomed. Eng. Lett., vol. 4, no. 4,

pp. 378-387, Oct. 2014.




Characterization of ingestive behavior

9:58 AM attached device
10:12 AM banana, muffin

12:49 PM salad, lasagna
2:18 PM 3 cookies

A W N =
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5 6:30 PM avocaqdo, lo mein
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« Measuring the rate of ingestion

Infant Feeding Human Algorithm | Per-segment Per-meal

(k) mode counted estimated Mean Count | Mean Count

sucks sucks Error Error

1 Breast-fed 573 494 4.53% 13.79%

2 Bottle-fed 416 411 -4.52% 1.20%

3 Bottle-fed 662 699 -15.49% -5.67%

4 Bottle-fed 1023 886 6.13% 13.39%

5 Bottle-fed 596 624 -4.88% -4.79%

6 Breast-fed 641 614 -7.10% 1.25%

Mean: -3.55% 3.20%

STD: 7.96% 8.56%

Absolute Mean: 7.11% 6.68%

Absolute STD: 4.23% 5.65%

M. Farooq, P. Chandler-Laney, M. Hernandez-Reif, and E. Sazonov, “Monitoring of Infant Feeding Behavior Using a Jaw Motion Sensor,” J.

Healthc. Eng., vol. 6, no. 1, pp. 23-40, Feb. 2015.

M. Farooq, P. Chandler-Laney, M. Hernandez-Reif, and E. Sazonov, “A Wireless Sensor System for Quantification

of Infant Feeding Behavior,” to appear 2015.
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Accuracy of the models implemented on finding the correct
number of S food items for different combinations of features.

x, e R’ x, e R’
Affinity 88.8% (SD 14.1)  90.3% (SD 12.7)
propagation
Agglomerative
Hierarchical 92.9% (SD 9.6) 95.3% (SD 8.5)
Clustering

P. Lopez-Meyer, S. Schuckers, O. Makeyev, J. M. Fontana, and E. Sazonov, “Automatic identification of the number of food items in a
meal using clustering techniques based on the monitoring of swallowing and chewing,” Biomed. Signal Process. Control, vol. 7, no. 5,

pp. 474-480, Sep. 2012.



« Measuring the mass of ingested foods
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Toward objective monitoring of ingestive behavior in free living population, E.Sazonov et. al, Obesity (2009) 17 10, 1971-1975.



Characterization of ingestive behavior

« Estimating the caloric content
« N=28, self-selected meals

ENERGY

Training meals ~ Validation meal

Energy estimation methods Mean SD Mean SD
Reporting errors (in %) for
€O Models energy intake estimation for
Chews only 19.42  10.14 3042  23.08 training and validation meals
Swallows only 18.76° 1035 3427 3186 relative to energy intake
Chews and Swallows 15.83 941 3223  24.84 assessed from the Welghed
records
Diet diary 27.86  29.67  25.69 21.90
Photographic food records 19.95 1145 21.11 15.55

J. M. Fontana, J. A. Higgins, S. C. Schuckers, F. Bellisle, Z. Pan, E. L. Melanson, M. R. Neuman, and E. Sazonov, “Energy intake
estimation from counts of chews and swallows,” Appetite, vol. 85, pp. 14-21, Feb. 2015..



« Estimating the caloric density from imagery

Snapshot Time Consumption (%)

microphone

18.37 40
18.39 60
18.41 80
Left: a subject wearing the food-intake sensor during 18.45 100

lunch. Right: the profile of the sensor.

An example of food intake log

J. Liu, E. Johns, L. Atallah, C. Pettitt, B. Lo, G. Frost, and G.-Z. Yang, “An Intelligent Food-Intake Monitoring System Using Wearable
Sensors,” in 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2012, pp. 154-160..



« Conclusions

- No perfect solution exists at this
time, but there is progress 2 il

- The studies tend to report from & Sl
limited, highly controlled lab [ g
conditions. Statistically significant
experimentation in community is

needed Jaw motion
- . (chewing)
 Future directions

Concept of the next generation of

- Improving accuracy and comfort _ _ _
Automatic Ingestion Monitor (2016)

of sensors

- Deriving better caloric estimates
from fusion of imagery and sensor
information

- Developing efficient feedback
mechanisms for behavior change

Toward objective monitoring of ingestive behavior in free living population, E.Sazonov et. al, Obesity (2009) 17 10, 1971-1975.
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