Tastes and Textures Estimation of Foods based on the Analysis of Its Ingredients List and Image

Hiroki Matsunaga[†], Keisuke Doman^{‡,†}, Takatsugu Hirayama[†], Ichiro Ide[†], Daisuke Deguchi[†], and Hiroshi Murase[†]

Introduction

- Background: Numerous cooking recipes posted on the Web
 - Search by keyword matching with recipe titles or ingredient names
 - → Difficult to search by tastes and/or textures
- Purpose: Tastes and textures estimation from a cooking recipe

Proposed Method

- Concept: Focus on the correlations between
 - > Ingredients and taste (Ex. Pineapple should be sweet and/or sour)
 - Appearance and taste (Ex. Red foods are likely to be chilly)
- Framework: One-vs.-rest classifier for each taste class
 - Classifiers: Linear SVMs using two kinds of features
 - Ingredients feature: Binary vector representing the ingredients used in a cooking recipe
 - Image features: Composition of several image features
 - Color: Hue-saturation histogram and correlogram
 - Gradient: SIFT+BoF and HOG

Cooking recipe Kimchi Cabbage 					
Food image Ingredients					
Extract ingredients feature and image features					
Estimate tastes					
Taste label(s)					

Experiments

- Dataset: Rakuten Recipe dataset
- Labeled automatically by referring to user comments posted to each cooking recipe
 - 7,706 cooking recipes for taste estimation
 - 5,219 cooking recipes for textures estimation
- Condition: 8-fold cross validation
 - Evaluation criteria: F-measure
- Exp.1: Tastes estimation
- Results: Using both features was effective for almost all the taste classes
- Exp.2: Textures estimation
 - Results: Using only the ingredients feature was effective for some texture classes

Exp.1)	# of			
Taste class	# of Samples	Ingredients	Image	Both (Proposed)
Sweet	4,849	0.787	0.705	0.797
Salty	495	0.144	0.152	0.287
Sour	1,093	0.373	0.243	0.409
Chilly	907	0.388	0.298	0.345
Bitter	362	0.462	0.144	0.462

Exp.2)	# of Samples	Feature		
Texture class		Ingredients	Image	Both (Proposed)
Shaki-shaki	1,445	0.732	0.514	0.726
Fuwa-fuwa	1,353	0.643	0.432	0.645
Toro-toro	843	0.378	0.310	0.363
Saku-saku	828	0.526	0.346	0.539
Hoku-hoku	750	0.660	0.333	0.650

Summary

- Conclusion: Proposed method is
 - Effective for tastes estimation
- Extensible to textures estimation

- Future work: Performance improvement
- Adaptive feature selection for each taste or texture class