Highly Accurate Food/Non-Food Image Classification based on a Deep Convolutional Neural Network

Hokuto Kagaya, Kiyoharu Aizawa The University of Tokyo

Background & Contribution

◆Automatic food image analysis is an emerging topic. Public and personal food images are very noisy, so food/non-food classification is necessary.

- ◆Apply fine-tuned CNN-NIN to classification
- ◆Use three datasets
- ◆Investigate dataset dependency of the classification performance by the experiment across the datasets

Two dataset

D1: Instagram Food/Non-Food Dataset

D2: Food-101/Caltech-256 Dataset

Classes	#images (Insta.)	#images (F/ C)
Food	4,230	25,250
Non-Food	5,428	28,322
Unspecified	342	-
Total	10,000	53,572

Methodology: CNN-NIN

- ◆ Convolutional Neural Network [LeCun+, 1989]
 - state-of-the-art in general object and food recognition

◆ Network in Network Min+ 20141

Experimental Results

Train	Test	Accuracy (Food)	Accuracy (Non-Food)
D1	D1	95%	94%
D2	D2	97%	96%
D1	D2	86%	95%
D2	D1	95%	87%
			at No. 1

Insta
Package
Food area is small

Ground Truth: Non-Food
Flower
Shoes

Living thing

▼D3: Comparison using dataset in [kagaya+ 2014]		
Method	Accuracy	
Hand-crafted feature + SVM	89.7±0.73%	
Kagaya+, 2014	93.8±1.39%	
This study (CNN-NIN)	99.1± 0.81%	

Conclusion

- ◆Accuracy is 95%, 96% and 99% for D1, D2 and D3 respectively.
- ◆Evaluation across the dataset between D1 and D2 shows different tendency od degradation of the classification performance.