Fractal Nature of Chewing Sounds

Vasileios Papapanagiotou Christos Diou Anastasios Delopoulos

Multimedia Understanding Group Dpt. Electrical & Computer Engineering Aristotle University of Thessaloniki Greece CSEM SA Landquart Switzerland

Zhou Lingchuan

Janet van den Boer Monica Mars

Division of Human Nutrition Wageningen University Netherlands

Dietary Monitoring

Using a non-intrusive, in-ear microphone

Audio recording throughout the entire day

Detection of snacks for objective behavioural monitoring

The SPLENDID Project

SPLEND^{*}D

Personalised Guide for Eating and Activity Behaviour for the Prevention of Obesity and Eating Disorders

Whole-day monitoring of dietary habits using chewing sensor

Whole-day monitoring of physical activity level using physical activity sensor

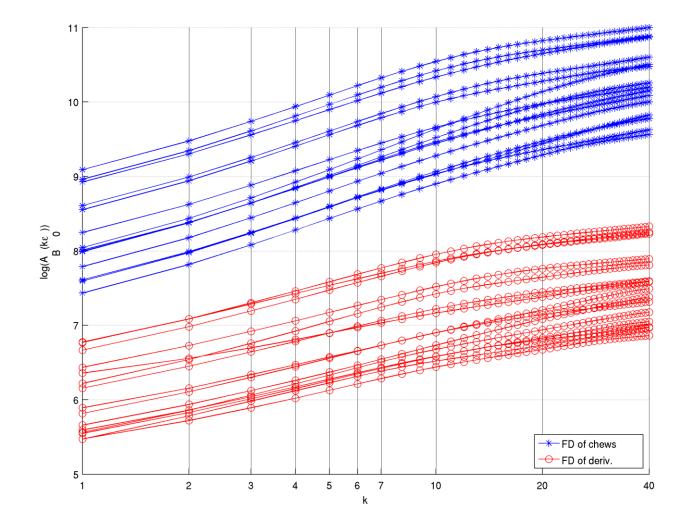
In-meal beahaviour monitoring using Mandometer

Integration with an Android mobile phone over Bluetooth

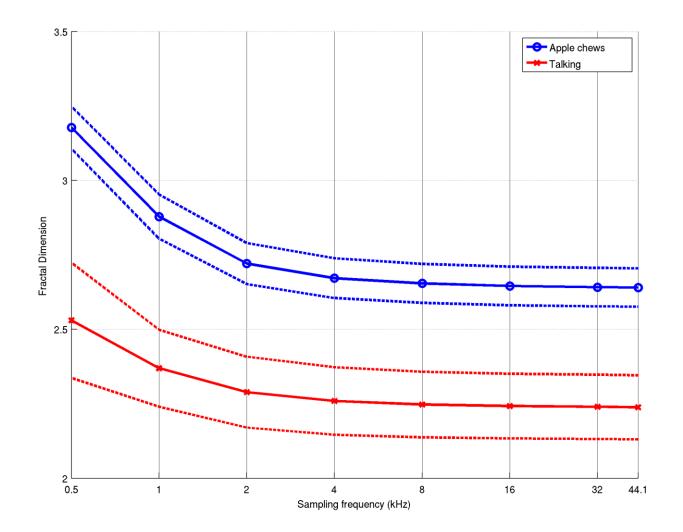
Motivation & Problem Statement

Main Problem	Detect chewing activity with an in-ear microphone and use it to create dietary behaviour reports
Challenges -	Need for robust chewing detection
chancinges	No assumption about level of ambient noise
	Interference by talking, socializing, performing outdoor activities, etc
	Low computational effort, to enable mobile integration
Approach	Examine the Fractal Nature of chewing sounds, compared to other sounds
	Form a robust detector based on the Fractal Dimension of captured audio

Fractal Dimension

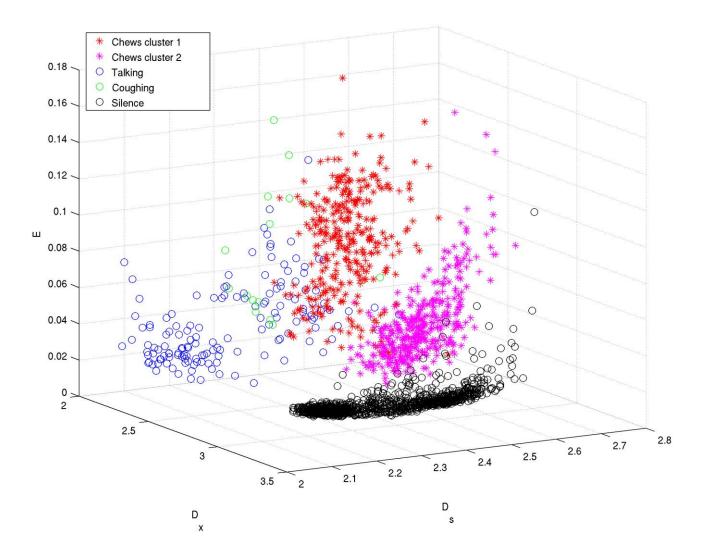

Fractal Dimension by
Mandelbrot

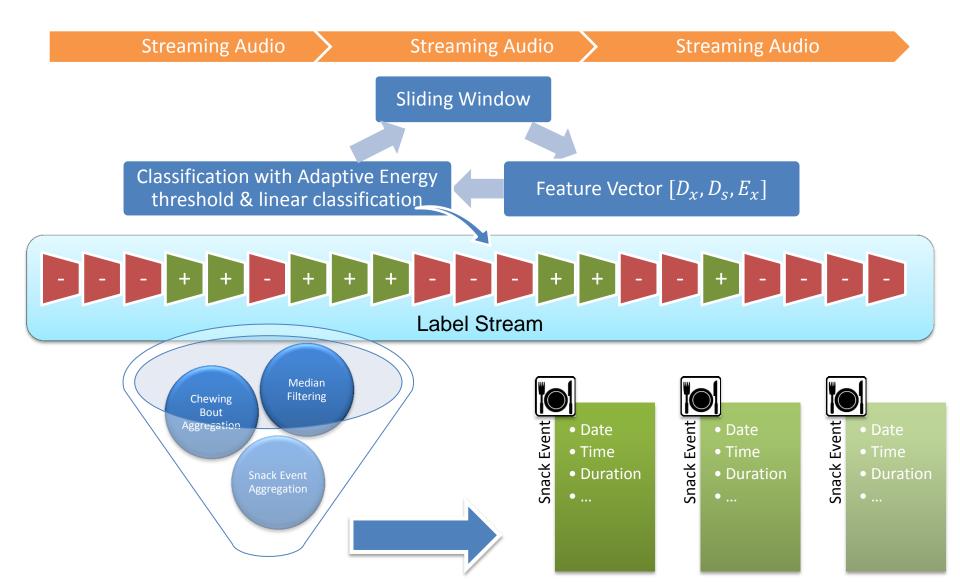
$$D = 2 - \lim_{\varepsilon \to 0} \frac{\log A_B(\varepsilon)}{\log \varepsilon}$$


For truly fractal signals, this ratio is independent of ε

The area $A_B(\varepsilon)$ is approximated using dilation and erosion banks, by	$A_B(\varepsilon) \approx \sum_{n=0}^{N-1} [x_k^d(n) - x_k^e(n)]$ $\varepsilon = k\varepsilon_0, \qquad k = 0, 1, 2, \cdots, M$
Data points	Linear fitting on the data points $(k, A_B(\varepsilon))$ can be used to compute the Fractal Dimension as the gradient of the fitted curve
The Fractal Dimension can thus be approximated using data points as	$D = \frac{1}{M} \sum_{k=1}^{M} \frac{\log A_{B}((k+1)\varepsilon_{0}) - \log A_{B}(k\varepsilon_{0})}{\log(k+1) - \log k}$

Chewing Sounds are Fractal-like


Higher Fractal Dim. of Chewing Sounds


Designing a Detection Algorithm

Fractal Nature	 Fractal dimension of the audio segments (and their derivatives) can be used to discriminate between chewing and non-chewing activities (such as talking) However, estimation of Fractal Dimension for low energy segments (silence or low ambient noise) is inaccurate 		
Features	D_x : Fractal Dimension of audio segment		
	<i>D_s</i> : Fractal Dimension of derivative of audio segment		
	E_s : Energy of audio segment		
Decision	Energy threshold rejects silent/low-noise segments		
	For non-rejected segments, a linear boundary discriminates between chewing and non-chewing		

Feature Space

Detection Algorithm

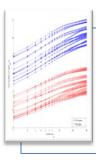
Datasets

Complete Dataset

Extracted Chews

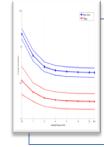
Collected at Wageningen University	10 subjects	Food Type	No.	Туре	No.
	30 minute-long recordings	Apple	156	Cough	15
		Banana	63	Pause	1032
Various tasks	Eating various food types Talking	Bread	84	Talk	147
	Coughing	Candy bar	96		
Prototype sensor by CSEM	Eating with Talking, background noise, etc FG-23329 mic housed in an ear bud	Chewing gum	126		
		Potato chips	149		
		Total	674		1194

Experimental Results for Extracted Chews

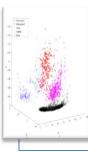

Parameters	Energy threshold: 0.02	Class	Chew	T/C	Silence
		Apple	156	0	0
	Boundary: $y = -2.62x + 8.73$	Banana	62	0	3
Tablabaset		Bread	83	0	1
Training set accuracy	95.4 % for the three class task (chewing, talking/coughing, silence)	Candy bar	95	0	1
	96.5 % for chew vs. non-chew	Chewing gum	120	0	6
	(chewing vs. talking/coughing)	Cough	2	13	0
Errors	Only 7 potato chip chews misclassified as talking/coughing	Pause	27	0	1005
		Potato chips	142	7	0
	Only 9 chews misclassified as silence	Talking	21	106	20

Results for Chew Bouts and Snacks

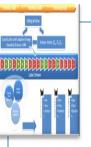
Algorithm	Chew bout		Snack		
Algorithm	Precision	Recall	Precision	Recall	
Max. Sound Energy	0.85	0.75	0.77	0.90	
Max. Spectral Band Energy	0.89	0.76	0.81	0.89	
Low-pass Filtering	0.86	0.78	0.79	0.94	
Chewing Band Power	0.92	0.61	0.92	0.87	
Fractal Dimension	0.91	0.87	0.86	0.98	


Chewing	Similar accuracy with Chewing Band Power
Bouts	Significant improvement at recall
Snacks	Relatively lower accuracy than Chewing Band Power, still better than other algorithms
	Almost 100% recall

Conclusions


Fractal Nature

Chewing sounds are highly fractal
Estimation of Fractal Dimension requires only few data points (6 banks of dilation/erosion)


Discrimination

Chewing sounds exhibit higher Fractal Dimension than other sounds captured by in-ear microphones
This property persists even for severely down sampled recordings

Classification

- •Fractal Dimension & Energy can be used to detect chewing activity
- Indication for food texture prediction

Algorithm

High effectiveness in challenging datasetImprovement compared to literature approaches

Thank you