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Introduction

Monitoring dietary behaviour in every-day conditions can be a powerful tool in early
detection of risk for diseases such as Obesity or Eating Disorders (e.g. Anorexia Ner-
vosa), as in the case of the SPLENDID project (http://splendid-program.eu/).

A modality for monitoring dietary behaviour is the acoustic signal captured by a
microphone conveniently placed near the outer inner ear canal. Am et al. [1] in-
troduced this setup, and suggested an algorithm based on estimation of statistical fea-
tures of audio, and a classification scheme. Päßler et al. [2] has systematically tested
seven algorithms on a large dataset.

In this work, we explore the Fractal Dimension of chewing sound signals and sig-
nal derivatives, and investigate its potential as a discrimination attribute against other
sounds captured by such amicrophone, such as talking, coughing, and ambient noise.

Fractal Dimension of Chewing Sounds

Fractal Dimension byMandelbrot, whereAB(ϵ) is the area resulting from dilating the
graph by ϵB, is defined as

D = 2− lim
ϵ→0

logAB(ϵ)

log ϵ

For discrete signals, the area AB can be approximated using M banks of the dilated
and eroded versions of the audio segment [3]

AB(ϵ) ≈
N−1∑
n=0

[
xdk(n)− xek(n)

]
, ϵ = ϵ0k, k = 0, 1, 2, 3, . . . ,M

We estimate the Fractal Dimension as

D =
1

M

M∑
ϵ=1

log(AB((k + 1)ϵ0))− log(AB(kϵ0))

log(k + 1)− log(k)

To examine the fractal nature of chewing sounds, we plot in Fig. 1 the data points
logAB(ϵ) against the scaling parameter k on a set of extracted chewing and non-
chewing segments from a larger dataset. e observed linearity is a strong indica-
tion of their inherent high fractal nature, and is significantly higher than other
sounds such as talking, coughing, noise, etc. A maximum level of 6 banks (M = 5)
is required to accurately estimate the Fractal Dimension of such chewing audio seg-
ments.
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Figure 1: Local gradient for logAB(ϵ) versus k =
1, 2, . . . , 40 (on log-scale), for 20 apple chew segments
(blue) and their derivatives (red).
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Figure 2: Mean (± standard deviation) of Fractal Dimen-
sion of apple chews and talking segments, across various
sampling frequencies (in log-scale), showing (a) the linear
separability of the two classes, and (b) that down-sampling
up to 2 kHz does not significantly alter the actual value of
Fractal Dimension.

Down-sampling the audio signal (originally sampled at 44.1 kHz) as low as at 2 kHz
does not alter the fractal nature of the chewing sounds, and can thus be used to dis-
criminate chewing from non-chewing sounds (Fig. 2).

Forming a classifier

A feature vector of the form [Dx, Ds, Ex] is estimated for each chewing and non-
chewing segment of the extracted audio segments. e segment energy Ex can
linearly separate segments of silence (or very low noise) from the rest of the
chewing/non-chewing segments, since the Fractal Dimension of silence is not accu-
rately estimated.

e Fractal Dimensions Dx and Ds of the audio segment and its derivative respec-
tively can be used to discriminate chewing sounds from non-chewing ones, once the

low energy segments have been eliminated (Fig. 3). It is also possible to detect clusters
of various properties, such as crispy and non-crispy.
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Figure 3: Feature vectors for the entire dataset, at 2 kHz. Chews cluster 1 includes banana and potato chips, and chews
cluster 2 includes the remaining 4 food types.

Experiments

A dataset of 10 subjects was recorded in Wageningen University. Each subject was
wearing a prototype sensor consisting of an FG-23329microphone housed in an ear
bud, designed byCSEM. Each recording lasts approximately 30minutes, and includes
a variety of tasks such as eating various types of foods, talking, coughing, eating in
background noise/talk, etc, creating a realistic and challenging dataset.

Table 1: e extracted audio segments of
chewing and non-chewing segments.

Food Type No. Type No.
Apple 156 Cough 15
Banana 63 Pause 1032
Bread 84 Talking 147
Candy bar 96
Chewing gum 126
Potato chips 149
Total 674 Total 1194

Table 2: Confusionmatrix for the classification experiment with linear kernel
and three classes: chew, talk/cough, and silence. Energy threshold is 0.0202,
and the separating line in theDx×Ds plane is defined by y = −2.62x+8.73.
Classification accuracy is 95.4%.

Class Chew T/C Sil.
Apple 156 0 0
Banana 62 0 3
Bread 83 0 1
Candy bar 95 0 1
Chewing gum 120 0 6
Cough 2 13 0
Pause 27 0 1005
Potato chips 142 7 0
Talking 21 106 20

To evaluate the algorithm in real-life applications, we have combined it with an ag-
gregation method based on adaptive energy estimation, to detect chewing bouts. We
have also applied known literature algorithms using the same aggregationmethod for
comparison.

Table 3: Precision and recall for chew bouts and snacks for the entire dataset.

Chew bout Snack
Algorithm Precision Recall Precision Recall
Max. Sound Energy 0.85 0.75 0.77 0.90
Max. Spectral Band Energy 0.89 0.76 0.81 0.89
Low-pass Filtering 0.86 0.78 0.79 0.94
Chewing Band Power 0.92 0.61 0.92 0.87
Fractal Dimension 0.91 0.87 0.86 0.98

Conclusions

We have performed a systematic analysis of the fractal nature of chewing sounds,
which indicates that chewing sounds are highly fractal, compared to other sounds
captured by suchmicrophones. us, the Fractal Dimension can be used to discrimi-
nate chewing from non-chewing sounds, even in severely down-sampling the audio
segments. Promising evidence was also found in discriminating between different
food types (e.g. crispy/non-crispy).

Based on this evidence, we have proposed a detection algorithm and employed it to
detect chewing bouts. e algorithm's computational burden is significantly low (re-
cursive computation of dilation and erosion, very few levels of banks required to es-
timate the Fractal Dimension, very low bandwidth requirement of 2 kHz).

e algorithm was applied on a challenging dataset with realistic conditions (am-
bient noise, talking, coughing, etc). We have observed significant improvement,
especially over recall, against other known counterparts of literature.

[1] Oliver Am, Martin Kusserow, and G Troster. Bite weight prediction from acoustic recognition of chewing. Biomedical Engineering, IEEE Transactions on, 56(6):1663-1672, 2009.
[2] Sebastian Päßler andWolf-Joachim Fischer. Evaluation of algorithms for chew event detection. In Proceedings of the 7th International Conference on Body Area Networks, pages 20-26. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2012.
[3] Petros Maragos and Alexandros Potamianos. Fractal dimensions of speech sounds: Computation and application to automatic speech recognition. e Journal of the Acoustical Society of America, 105(3):1925-
1932, 1999.


