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Food Analy5|s Framework

B Output: Food Name
(+ Some Information)
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Noisy Input Images

Case 1: Personal photo albums
Personal photos is usually not arranged

We want our photos in personal albums to be classified
food or non-food automatically.

My photo album in iPhone
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Noisy Input Images

Case 2: SNS photos

Hash tags are very confusing
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‘Food Image Analysis

- Health Care, Lifelog, Entertainment (e.g. SNS)
- FoodLog Appri
- Assist food recording using image processing
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[1] http://app.foodlog.jp/
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Food Imageﬂalysis

Google made a statement about Al to count
calories in food porno pictures (May, 2015)

Business Markets Tech Luxury

Innovate

Google says it can count calories in a
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Ecalories in your food photos

RS AY —_JN Google research scientist spills the beans on an artificial-intelligence project that tries to
’ 'calculate the calories in your food porn pictures - and learns from its mistakes.

P by Danny Gallagher ¥ @thisisdannyg / June 1, 2015 1:54 PM PDT
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http://money.cnn.com/2015/06/03/technology/google-calories-food/
http://www.cnet.com/news/google-working-on-ai-that-can-count-calories-in-your-food-photos/
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Related Work

Food item recognition from one image

Fusing general appearance featurestHoashi+, 2010}

Dataset : Japanese foods (collected from web)
Used SIFT, Gabor feature, Color feature (MKL-SVM)

Original feature specific to food images!Yang+ 2010]
Dataset : General USA fast foods (PFID)
“pair-wise local features”

Deep | earni ng [Kagaya+, 2014](ours)

Dataset: FoodLog Dataset
Compared to existing techniques, 10-15% better performance.
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“pair-wise local features”

Deep | earni ng [Kagaya+, 2014](ours)

Dataset: FoodLog Dataset

Compared to existing techniques, 10-15% better performance.

[2] H. Hoashi et al., “Image recognition of 85 food categories by feature fusion", IEEE ISM, 2010.
[3]S. Yang et al., “Food recognition using statistics of pairwise local fatures”, CVPR, 2010.
[4] H. Kagaya et al., “Food Detection and Recognition Using Convolutional Neural Network”, ACMMM 2014.
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Related Work

More and more food image dataset
PF|DI[Chen+, 2009]

Food-1(01[Bossard+, 2014]
101 classes * 1,000 images from web

HECE Eooulz 256 avans: Al

256 classes * 101~729 images from web
FoodLog Dataset (ours) (Kagaya+, 2014]
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‘FoodlLog App

Smartphone application for food recording
helped using image processing!!
Available in iOS and Android

Image retrieval from user’s past food record using color
feature with spatial pyramid

v Personal trends is very important
X Many manual processes

11



Proposed Framework

Input: Image(s)

Output: Food Name
(+ Some Information)
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Problem and Contrlbutlon

- Food/Non-Food Classification
- judges whether an image is a food or not

Contribution

- Build two novel datasets

- Evaluate the performance of a deep CNN for food/non-
food recognition in the experiment within and across the
same dataset.
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Classification with CNN-NIN

- Convolutional Neural Network (CNN)!U4

- state-of-the-art for general image classification
- Also effective for food recognition!®

- Network in Network (NIN)!>!

- We employ NIN as the model because it performs better than
usual AlexNet and it is memory efficient

- mlpconv layers and global average pooling
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[14] Y. LeCun et al,, “Gradient-based learning applied to document recognition”, Proc. IEEE, 1998.
[15] M. Lin et al., “Network in Network”, ICLR, 2014. 14
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Datasets

Build two datasets for food/non-food classification

(D Instagram Food/Non-Food Dataset (Insta.)
Collect images tagged with “#food” from Instagramt'!
Motivated by another application: filtering SNS

2 Food-101/Caltech-256 Dataset (F/C)

Collect images in Food-1011191 35 food class and Caltech-256113]
(except for some food images) as non-food class

Food 4,230 25,250
Non-Food 5428 28,322
Unspecified 342 -

Total 10,000 53,572

[12] http:.//instagram.com/
[13] G. Griffin et al,, “Caltech-256 object category dataset”, Caltech Technical Report, 2006.

15



MADiMa 2015

Classnﬁcatlcm Protocol

Instagram Instagram
Food-101/Caltech-256 Food-101/Caltech-256
Food-101/Caltech-256 Instagram

Instagram Food-101/Caltech-256

- No. 1 + 2 (Within a dataset)

- change train/test ratio from 0.5 to 0.9 and average the result of
five trial for each ratio.

- No. 3 + 4 (Across datasets)
- is the model general?

16
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Wlthln one dataset

Train: Insta. / Test: Insta.

Predicted class
non-food food

Actual class
food non-food

Train: F/C/ Test: F/C

Predicted class
non-food food

Actual class
food non-food

17
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Wrong Cases (Instagram)

Ground Truth: Food
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‘Wrong Cases (Food/CaItech)
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Across datasets

Train: F/C/ Test: Insta. Train: Insta. / Test: F/C

Predicted class Predicted class
non-food food non-food food

IR:51 0.05

Accuracy: 91.5% Accuracy: 90.6%

Actual class
food non-food

Actual class
food non-food
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Wrong Cases (across)

*correct in “within” but wrong in “across”
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Ground Truth: Food
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Comparison with The Previous Methods

For comparison, we utilized the dataset in
[Kagaya+, 2014]
Baseline: SIFT/Circle feature/Color feature + SVML!
It is used the web version of FoodlLog

Baselinel!® 89.710.73%
Kagaya+, 2014 93.811.39%
This study (CNN-NIN) 99.1%x 0.81%

[19] K. Kitamura et al., “Food log by analyzing food images”, ACMMM, 2008
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Conclusmn & Future Work

Highly accurate food/non-food image
classification for pre-process of food imge
analysis

Built novel datasets (we will get them open publicly)

Used a deep convnet as a state-of-the-art and
conducted some experiments

Evaluated the performance using two datasets
within scheme: 95-96%
across scheme: 90-91%

Future: we really introduce this study to the
current FoodLog system

23
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Thank you for your kind attention!

Any’question?
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