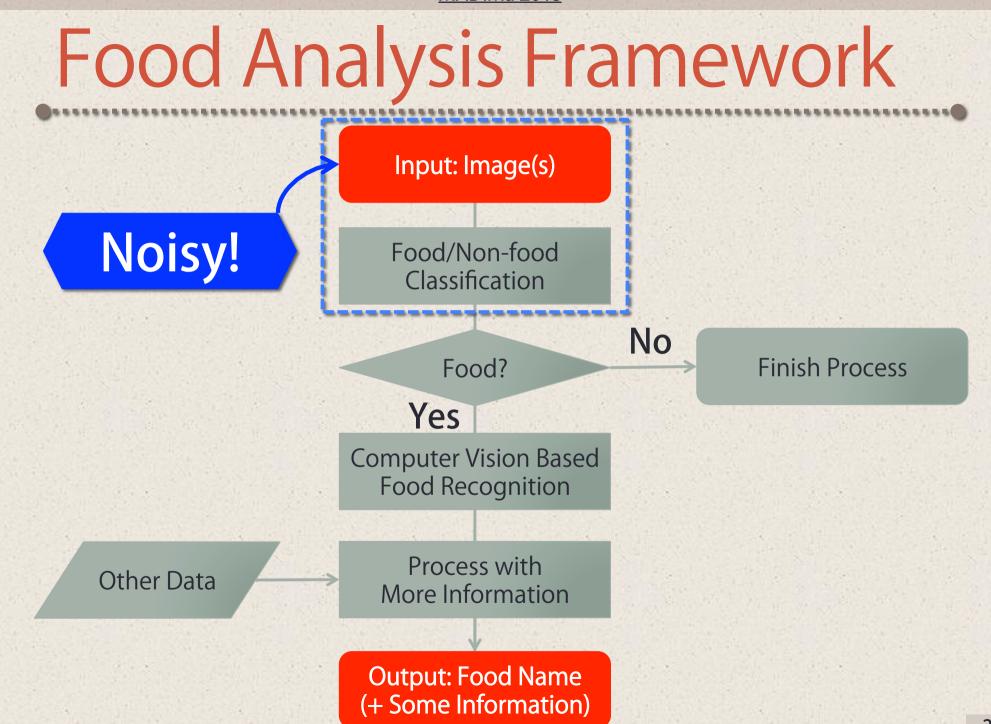
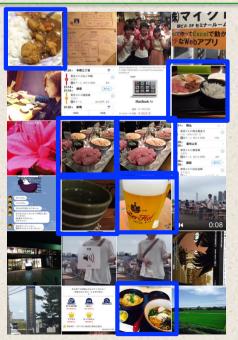

1st International Workshop on Multimedia Assisted Dietary Management (MADiMa)


Highly Accurate Food/Non-Food Image Classification based on a Deep Convolutional Neural Network

> 6th, September 2015 <u>Hokuto Kagaya</u> and Kiyoharu Aizawa The University of Tokyo

Food Image Analysis


* Displayed calories are not real values.

Noisy Input Images

- Case 1: Personal photo albums
 - Personal photos is usually not arranged
 - We want our photos in personal albums to be classified food or non-food automatically.

My photo album in iPhone

Noisy Input Images

Case 2: SNS photos Hash tags are very confusing

The search results of "#food" in Instagram

Food Image Analysis

- Health Care, Lifelog, Entertainment (e.g. SNS)
 FoodLog App[1]
 - Assist food recording using image processing

、モなし

ご飯	1 人前	252 🛤
味噌汁(わかめと小ねぎ	1 人前	34 🚥
鶏のから揚げ	3/4 人前	312 📼
もやしの炒め物	1/4 人前	16 kcal
メモなし		

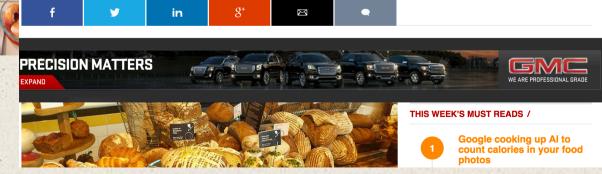
Food Image Analysis

Google made a statement about AI to count calories in food porno pictures (<u>May, 2015</u>)

CNN Money

Business Markets Tech Luxury stock tick

Innovate


Google says it can count calories in a picture

A Google research scientist spills the beans on an artificial-intelligence project that tries to calculate the calories in your food porn pictures – and learns from its mistakes.

by Danny Gallagher y @thisisdannyg / June 1, 2015 1:54 PM PDT

http://money.cnn.com/2015/06/03/technology/google-calories-food/ http://www.cnet.com/news/google-working-on-ai-that-can-count-calories-in-your-food-photos/

Related Work

- Food item recognition from one image
 - Fusing general appearance features^[Hoashi+, 2010]
 - Dataset : Japanese foods (collected from web)
 - Used SIFT, Gabor feature, Color feature (MKL-SVM)
 - Original feature specific to food images^[Yang+, 2010]
 - Dataset : General USA fast foods (PFID)
 - "pair-wise local features"
 - Deep Learning [Kagaya+, 2014](ours)
 - Dataset: FoodLog Dataset
 - Compared to existing techniques, 10-15% better performance.

Related Work

- Food item recognition from one image
 - Fusing general appearance features^[Hoashi+, 2010]
 - Dataset : Japanese foods (collected from web)
 - Used SIFT, Gabor feature, Color feature (MKL-SVM)
 - Original feature specific to food images^[Yang+, 2010]
 - Dataset : General USA fast foods (PFID)
 - "pair-wise local features"
 - Deep Learning [Kagaya+, 2014](ours)
 - Dataset: FoodLog Dataset
 - Compared to existing techniques, 10-15% better performance.

[2] H. Hoashi et al., "Image recognition of 85 food categories by feature fusion", IEEE ISM, 2010.

[3] S. Yang et al., "Food recognition using statistics of pairwise local fatures", CVPR, 2010.

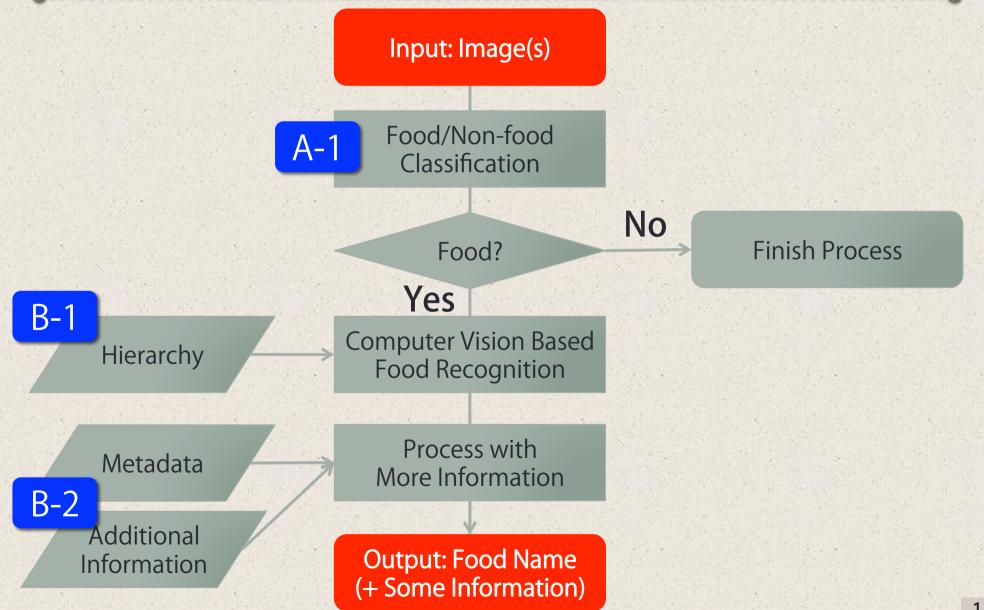
[4] H. Kagaya et al., "Food Detection and Recognition Using Convolutional Neural Network", ACMMM 2014.

Related Work

- More and more food image dataset
 - PFID^[Chen+, 2009]
 - Food-101^[Bossard+, 2014]
 101 classes * 1,000 images from web
 UEC Food-256^[Kawano+, 2014]
 - 256 classes * 101~729 images from web
 - FoodLog Dataset (ours) [Kagaya+, 2014]

FoodLog App

 Smartphone application for food recording helped using image processing^[1]


- Available in iOS and Android
- Image retrieval <u>from user's past food record</u> using color feature with spatial pyramid

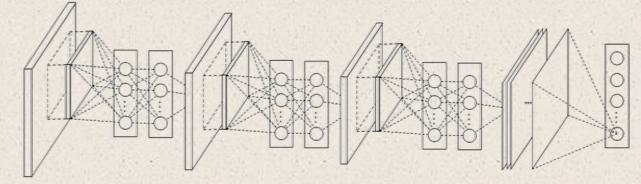
Personal trends is very importantMany manual processes

食べ物を長押しすると、 お皿毎に指定することができま

Proposed Framework

Problem and Contribution

- Food/Non-Food Classification
 - judges whether an image is a food or not


Contribution

Build two novel datasets

• Evaluate the performance of a deep CNN for food/nonfood recognition in the experiment within and across the same dataset.

Classification with CNN-NIN

- Convolutional Neural Network (CNN)^[14]
 - state-of-the-art for general image classification
 - Also effective for food recognition^[4]
 - Network in Network (NIN)^[15]
 - We employ NIN as the model because it performs better than usual AlexNet and it is memory efficient
 - mlpconv layers and global average pooling

[14] Y. LeCun et al., "Gradient-based learning applied to document recognition", Proc. IEEE, 1998. [15] M. Lin et al., "Network in Network", ICLR, 2014.

Datasets

- Build two datasets for food/non-food classification
 - 1 Instagram Food/Non-Food Dataset (Insta.)
 - Collect images tagged with "#food" from Instagram^[12]
 - Motivated by another application: filtering SNS
 - ② Food-101/Caltech-256 Dataset (F/C)
 - Collect images in Food-101^[10] as food class and Caltech-256^[13] (except for some food images) as non-food class

Classess	#images (Insta.)	#images (F/C)
Food	4,230	25,250
Non-Food	5,428	28,322
Unspecified	342	-
Total	10,000	53,572

[12] http://instagram.com/

[13] G. Griffin et al., "Caltech-256 object category dataset", Caltech Technical Report, 2006.

Classification Protocol


No	Training	Testing
1	Instagram	Instagram
2	Food-101/Caltech-256	Food-101/Caltech-256
3	Food-101/Caltech-256	Instagram
4	Instagram	Food-101/Caltech-256

• No. 1 + 2 (Within a dataset)

 change train/test ratio from 0.5 to 0.9 and average the result of five trial for each ratio.

No. 3 + 4 (Across datasets)

• is the model general?

Wrong Cases (Instagram) Ground Truth: Food

Package

Ground Truth: Non-food

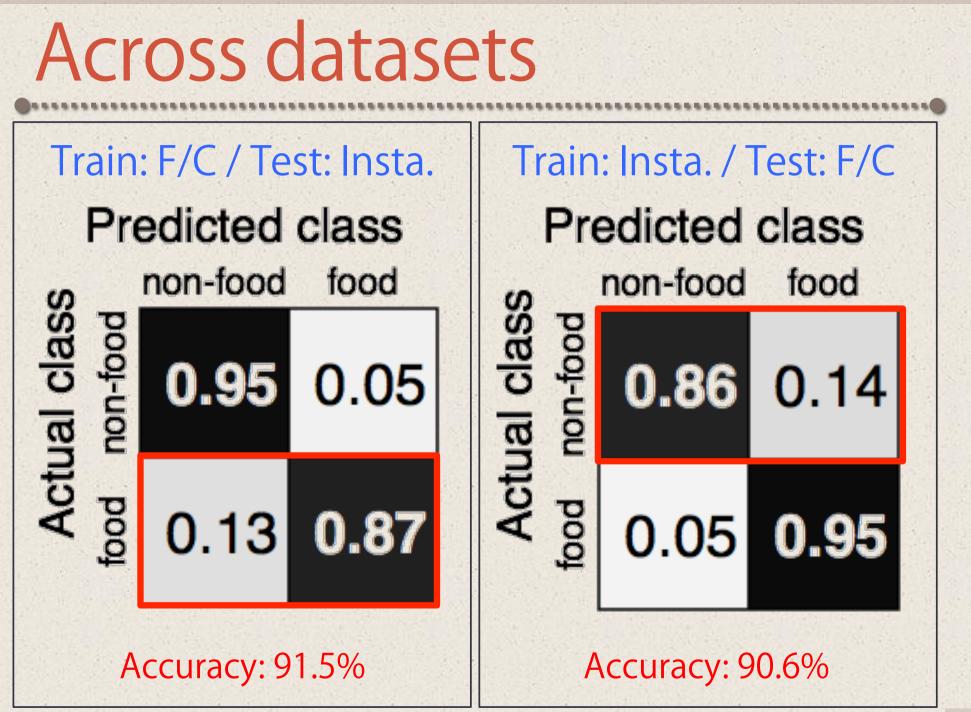
Wrong Cases (Food/Caltech)

Ground Truth: Food

Package

Food area is small

Ground Truth: Non-food



Living thing

Wrong Cases (across)

*correct in "within" but wrong in "across"

Ground Truth: Food

Ground Truth: Non-food

Comparison with The Previous Methods

- For comparison, we utilized the dataset in [Kagaya+, 2014]
 - Baseline: SIFT/Circle feature/Color feature + SVM^[19]
 - It is used the web version of FoodLog

Method	Accuracy
Baseline ^[19]	89.7±0.73%
Kagaya+, 2014	93.8±1.39%
This study (CNN-NIN)	99.1±0.81%

Conclusion & Future Work

- Highly accurate food/non-food image classification for pre-process of food imge analysis
 - Built novel datasets (we will get them open publicly)
 - Used a deep convnet as a state-of-the-art and conducted some experiments
 - Evaluated the performance using two datasets
 - within scheme: 95-96%
 - across scheme: 90-91%

 Future: we really introduce this study to the current FoodLog system

Thank you for your kind attention!

Any question?