

A Multi-Task Learning Approach for Meal Assessment

Ya Lu, Dario Allegra, Mario Anthimopoulos, Filippo Stanco, Giovanni Maria Farinella, Stavroula Mougiakakou

1]

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Contents

- □ Introduction
- Method
- Experimental results
- □ Conclusion

Introduction - Motivation

Type 1 Diabetes

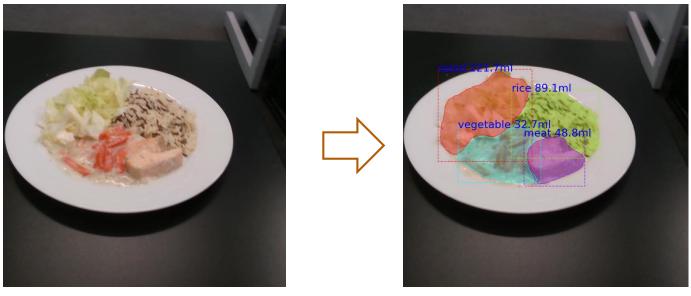
Obesity

Malnutrition

Diet-related chronic diseases

Introduction - Goal

Propose a multi-task learning approach to realize food recognition, segmentation and volume estimation through one network.

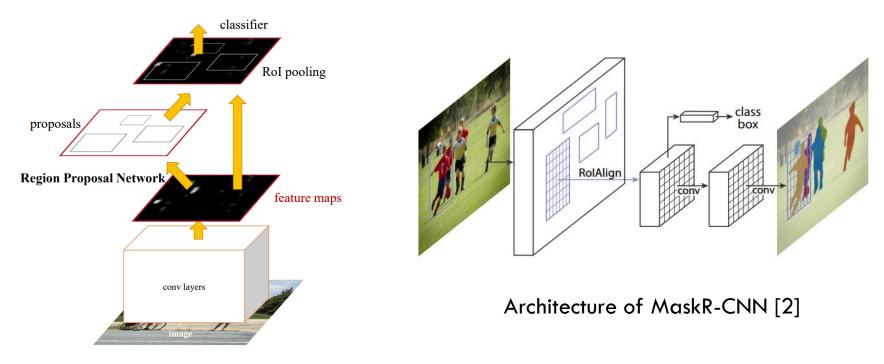


Single RGB image input

Output

Method - Network architecture (1/4)

Introduction of MaskR-CNN:

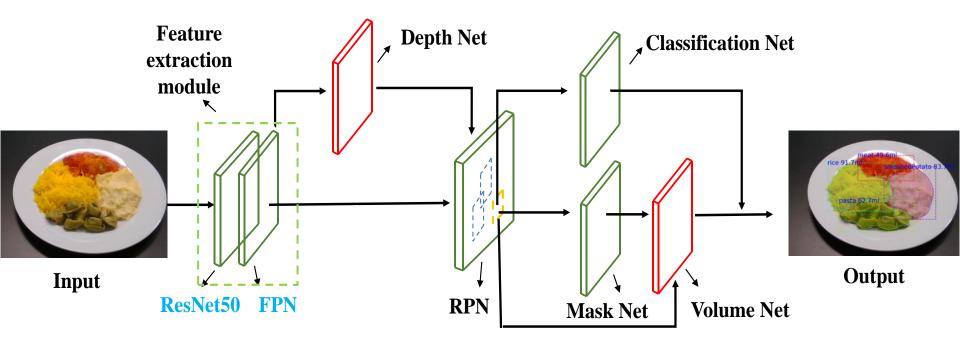


Architecture of Faster R-CNN [1]

[1] Shaoqing Ren, et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, 2016[2] Kaiming He, et al., MaskR-CNN, 2017

Method - Network architecture (2/4)

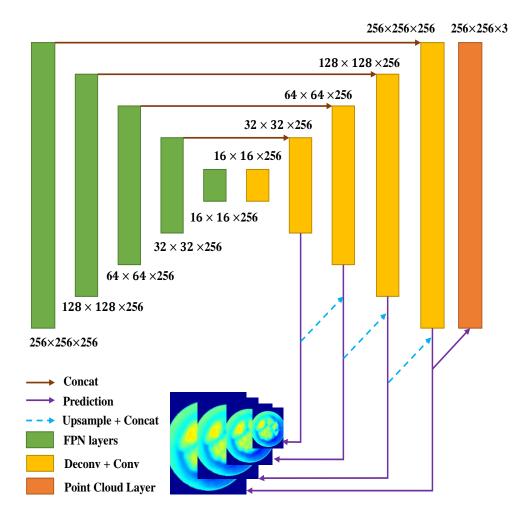
Multi-task network architecture:



Proposed by this paper

Method - Network architecture (3/4)

Depth Net



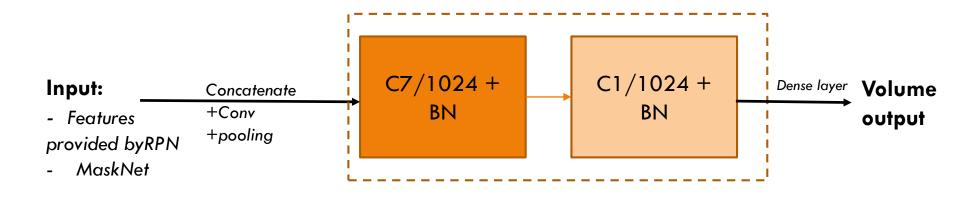
Convert depth image to point cloud:

$$X_{I}^{i} = \begin{bmatrix} x_{I}^{i} \\ y_{I}^{i} \\ z_{I}^{i} \end{bmatrix} = K^{-1} \begin{bmatrix} u_{I}^{i} \\ v_{I}^{i} \\ d_{I}^{i} \end{bmatrix}$$

$$K = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

Method - Network architecture (4/4)

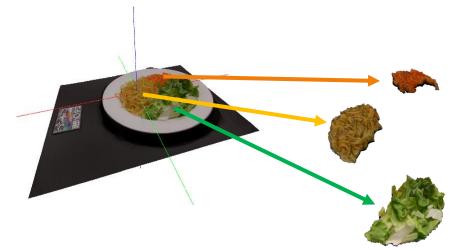
Volume Net



Experimental results (1/8)

Dataset – Madima17 database

- 80 central-European meals, 2-4 food items per meal
- RGB-D image pairs captured at different angle of view and distance for each meal
- Food categories, segmentation map and volume are annotated



The experiments are trained with full set, while tested on different datasets.

Fixed set

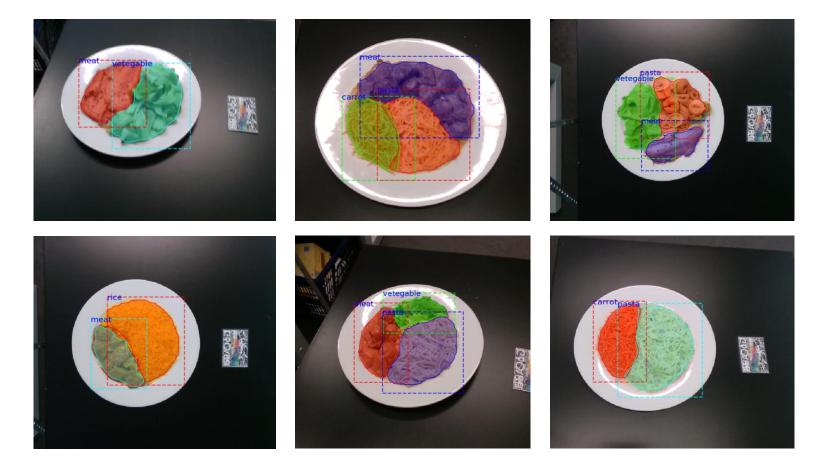
- 90°, 40cm; 80 images
- Free set
- Random angle and distance; 160 images
- Full set

- 90°, 60°, 40cm, 60cm + free set;

480 images

Experimental results (2/8)

□ Food segmentation and recognition



Experimental results (3/8)

Food segmentation & recognition

Evaluation metrics

F-value

$$NI_{\min}(T \to S) = Min_i \left(\frac{Max_j(|S_i \cap T_j|)}{|S_i|} \right)$$

$$NI_{sum}(T \to S) = \frac{\sum_{i} Max_{j}(|S_{i} \cap T_{j}|)}{\sum_{i} |S_{i}|}$$

$$F_{x} = \frac{2 \times NI_{x}(T \to S) \times NI_{x}(S \to T)}{NI_{x}(T \to S) + NI_{x}(S \to T)}, x = \min or sum$$

■ AP

$$mAP = \frac{1}{10} \sum_{IoU} AP_{IoU}, IoU \in [0.5:0.05:0.95]$$

Experimental results (4/8)

□ Food segmentation & recognition

Comparison of Segmentation method

	Fixed set		Full set	
Method	F _{sum} (%)	F _{min} (%)	F _{sum} (%)	F _{min} (%)
Proposed	94.36	83.90	94.10	78.18
Method in [3]	93.69	74.26	-	-
Method in [4]	92.47	73.36	91.83	75.33

[3] D. Allegra, et al., A Multimedia Database for Automatic Meal Assessment Systems. Madima Workshop, 2017.
[4] J.Dehais, et al., Dish Detection and Segmentation for Dietary Assessment on Smartphones. Madima Workshop, 2015.

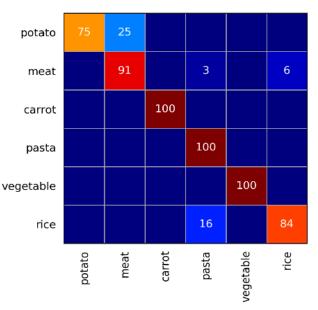
Experimental results (5/8)

□ Food segmentation & recognition

Quantitative results using AP measures

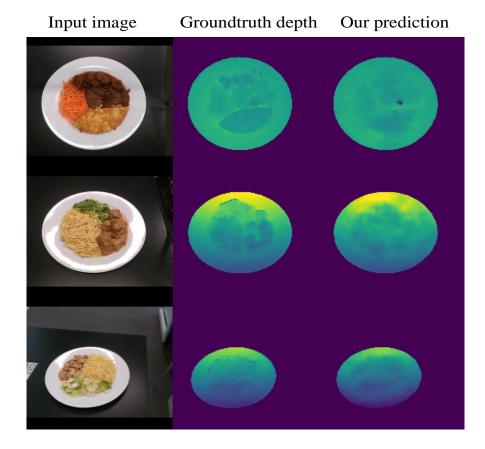
Dataset	mAP (%)	AP ₅₀ (%)	AP ₇₅ (%)
Fixed	69.4	90.4	85.7
Free	63.2	83.7	79.6
Full	64.7	85.1	79.1

Confusion matrix on Full set



Experimental results (6/8)

Depth estimation



	Free set		Full set	
Method	MAD	ARD	MAD	ARD
	(mm)	(%)	(mm)	(%)
Proposed	6.75	1.25	5.71	1.13
Method in [3]	8.64	1.76	6.03	1.25

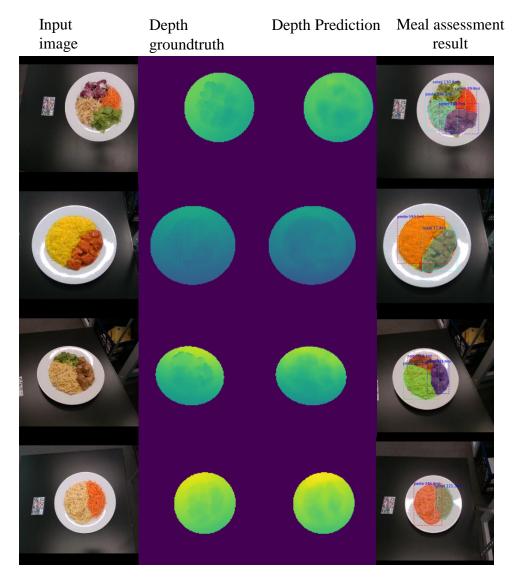
Experimental results (7/8)

□ Volume estimation

	Food item's average			
	percentage error			
Method	Fixed	Free	Full	Process
	(%)	(%)	(%)	time (s)
Proposed	17.5	19.1	19.0	<0.2
3D Reconstruction [3]	22.6	36.1	33.1	5.5

Experimental results (8/8)

 Some result samples of the whole pipeline:



Conclusion

- A multi-task learning approach is proposed for meal assessment, which only needs one RGB image as input.
- The proposed method achieved superior performance compared with state-of-art methods.
- Future work includes the extension of the methods to images with multiple dishes and database with higher diversities.

Thank you for the attention!

Questions?