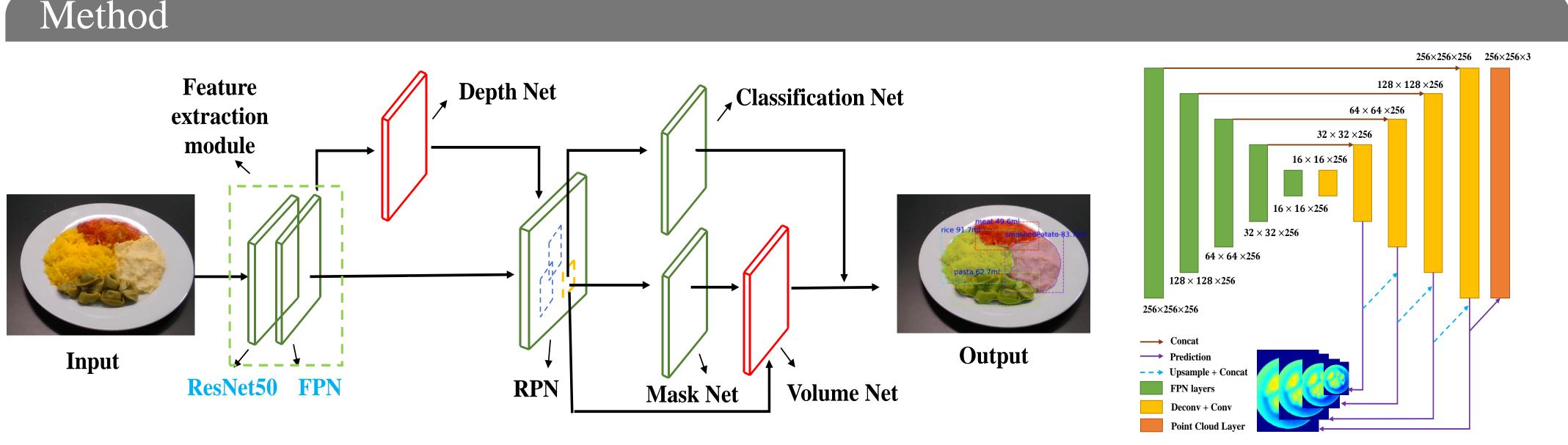
A Multi-Task Learning Approach for Meal Assessment


Ya Lu, Dario Allegra, Mario Anthimopoulos, Filippo Stanco, Giovanni Maria Farinella, Stavroula Mougiakakou

{ya.lu, marios.anthimopoulos, stavroula.mougiakakou}@artorg.unibe.ch; {allegra, fstanco, gfarinella}@dmi.unict.it;

Introduction

Key role in the prevention of diet-related chronic diseases plays the balanced nutrition together with a proper diet. The conventional dietary assessment methods are time-consuming, expensive and prone to errors. The advances in the fields of artificial intelligence and computer vision permitted the use of meal image to assess the nutrient content usually through three steps: food segmentation, recognition and volume estimation.

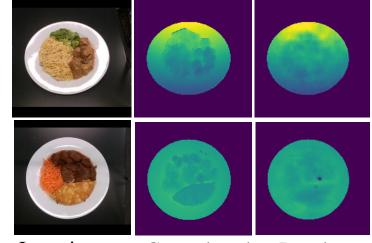
In this research work, we propose the use of one RGB meal image as input to a Multi-Task Learning based Convolutional Neural Network (MTL-CNN). The proposed approach achieved outstanding performance, while a comparison with state-of-the-art methods indicated that the proposed approach exhibits clear advantage in accuracy, along with a massive reduction of processing time.

MTL-CNN architecture

Database

- 80 central-European meals
- 6 RGB-D image pairs at different angles and distances for each meal
- Food category, segmentation map and volume are annotated
- Three (3) datasets: Fixed distance and angle (FDA), free-hand (FH) and full (FULL)

Segmentation & Recognition


Comparison of segmentation method

	FDA dataset		FULL dataset	
Method	$F_{sum}(\%)$	$F_{min}(\%)$	F _{sum} (%)	$F_{min}(\%)$
Proposed	94.36	83.90	94.10	78.18
Method in [2]	93.69	74.26	-	-
Method in [3]	92.47	73.36	91.83	75.33

Depth Estimation

Comparison of depth prediction method per dataset

	FH dataset		FULL datas	
Method	MAD	ARD	MAD	ARD
	<i>(mm)</i>	(%)	<i>(mm)</i>	(%)
Proposed	6.75	1.25	5.71	1.13
Method in [2]	8.64	1.76	6.03	1.25

Depth Net

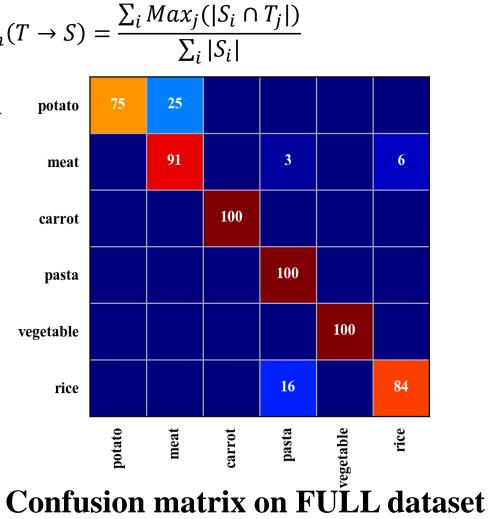
Input image Ground truth Result

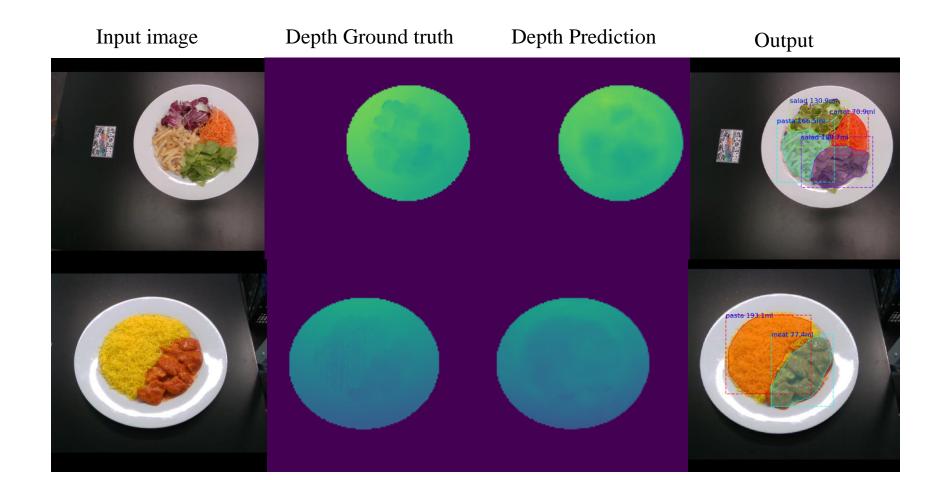
Examples of depth estimations

Volume Estimation

Comparison of volume estimation

	Food item's average percentage error			
Method	FDA (%)	FH (%)	FULL (%)	Process time (s)
Proposed	17.5	19.1	19.0	<0.2
3D Reconstruction [2]	22.6	36.1	33.1	5.5


$$NI_{min}(T \to S) = Min_{i}\left(\frac{Max_{j}(|S_{j} \cap T_{j}|)}{|S_{i}|}\right) \qquad NI_{sum}(T \to S)$$


$$F_{x} = \frac{2 \times NI_{x}(T \to S) \times NI_{x}(S \to T)}{NI_{x}(T \to S) + NI_{x}(S \to T)}, x = \min \text{ or sum } potato$$

$$Output itative results using Average \qquad \text{meat}$$

Precision (AP)

Dataset	mAP	AP ₅₀	AP ₇₅	
	(%)	(%)	(%)	
FDA	69.4	90.4	85.7	
FH	63.2	83.7	79.6	
FULL	64.7	85.1	79.1	
$mAP = \frac{1}{10} \sum_{IoU} AP_{IoU}, IoU \in [0.5: 0.05: 0.95]$				

Some sample results

References

[1] K. He, et al., Mask R-CNN. In arXiv:1703.06870, 2017.

[2] D. Allegra, et al., A Multimedia Database for Automatic Meal Assessment Systems. *Madima Workshop*, 2017.

[3] J. Dehais, et al., Dish Detection and Segmentation for Dietary Assessment on Smartphones. Madima Workshop, 2015.

