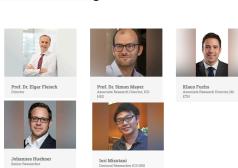


Impact of Mixed Reality Food Labels on Product Selection: Insights from a User Study using Headset-mediated Food Labels at a Vending Machine


Klaus Fuchs; Tobias Grundmann; Mirella Haldimann; Elgar Fleisch ETH Zurich

Auto-ID Labs ETH / HSG: Our Chair combines research on internet of things in the retail & health domain (consumer health)

Auto-ID Labs ETH/HSG (Focus: Retail)

- Focus on research on IOT in the retail domain. Strong partnership with GS1 - the global standards organisation.
- Team: 2 Professors, 1 PostDoc, 3 PhD candidates (Lead: Klaus Fuchs)
- Auto- ID Labs as a network of research centers around the globe:
 MIT, ETH, Keio, KAIST, Tongji, Cambridge
- www.autoidlabs.ch
- www.autoidlabs.org

Center for Digital Health Interventions (Focus: Health)

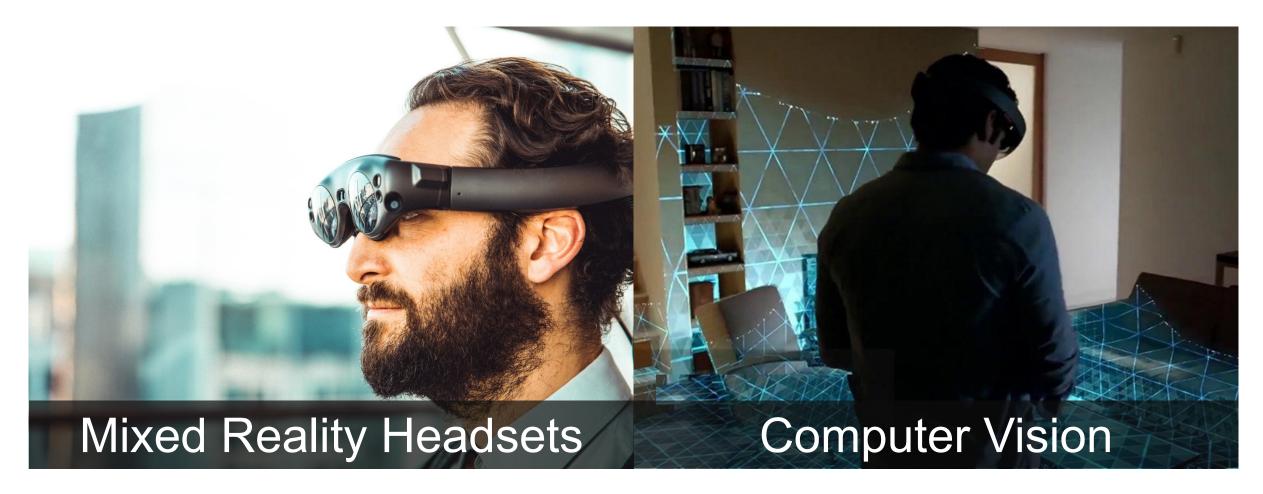
- Focus on digital health interventions, incl. mobile coaches, chatbots and automatic sensing of health statuses in asthma, diabetes. Partnership with CSS - the largest Swiss health insurance.
- Team: 4 Professors, 9 PhD candidates (Lead: Dr. Tobias Kowatsch)
- www.c4dhi.org/

Motivation

Problem: Current diet tracking not supporting healthy choices in the supermarket, where most processed foods are purchased.

 Diet tracking via diaries or mobile apps is effort-intense. 77% have never used a diet app, 18% stopped, only 5% actively use a diet tracking app¹⁾, despite their effectiveness when used.

 Most of unhealthy food is purchased in supermarket, esp. processed food²). But today's diet tracking apps are not designed for improving purchase decisions.

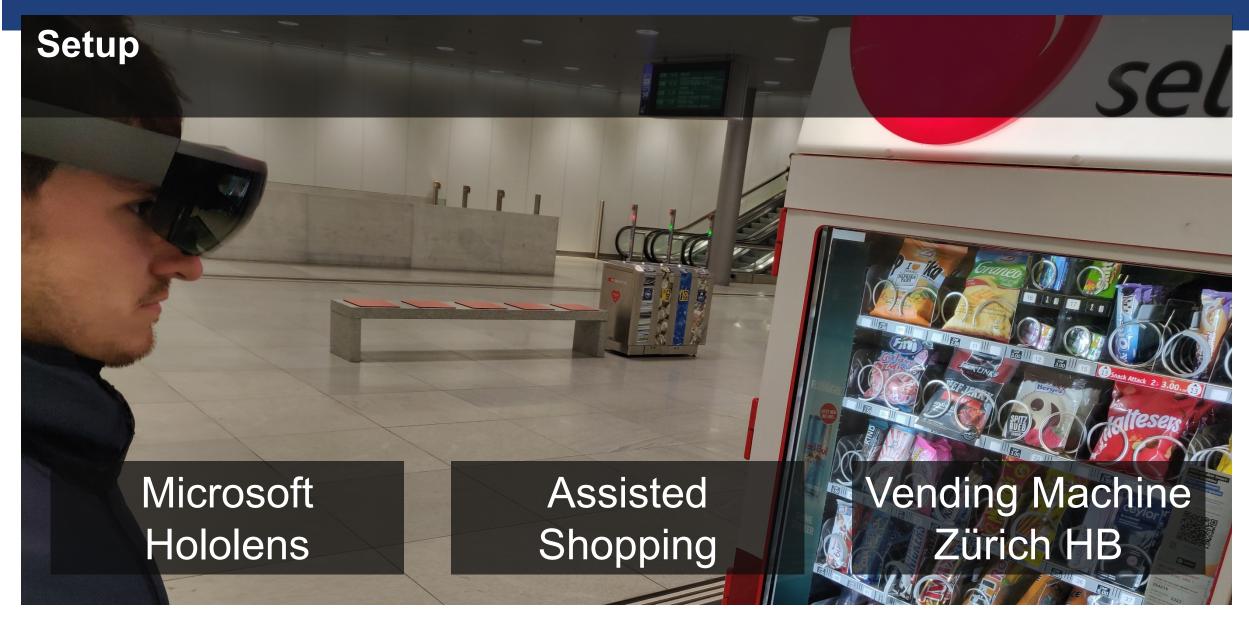

 Current nutrition labels are hard to understand & 74% of citizens do not use them³⁾. Novel labels like Nutri-Score⁴⁾ are effective and mandated only in FR, ES, BE, NL.

1) König (2018) JMIR, 2) Chappuis (2011), 3) Spronk (2014), 4) Julia and Hercberg (2017) Public Health Panorama

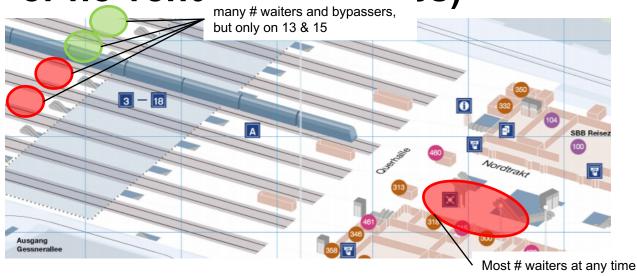
Technological advances provide new opportunities in passively triggered & hands-free interactions

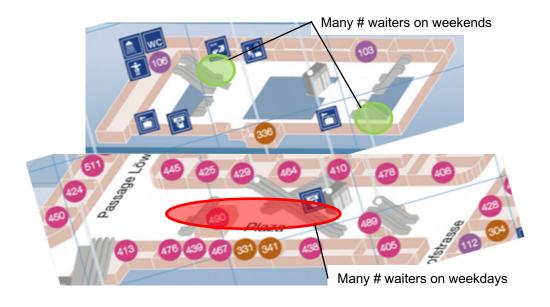
Motivation: Make Nutrients ,visible' without requiring human input

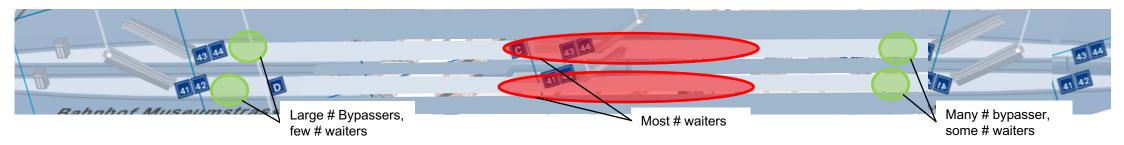
Motivation: Make Nutrients ,visible' without requiring human input



Research Design







Traffic observed around the vending machines and the station (Green: Vending machines with ideal conditions, Red: No waiters

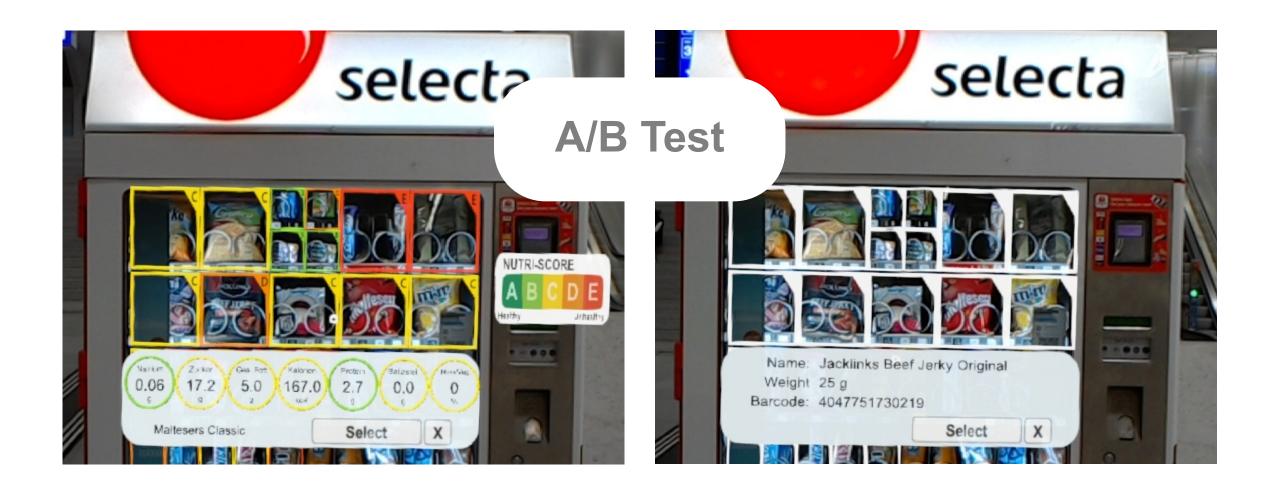
or no vending machines)

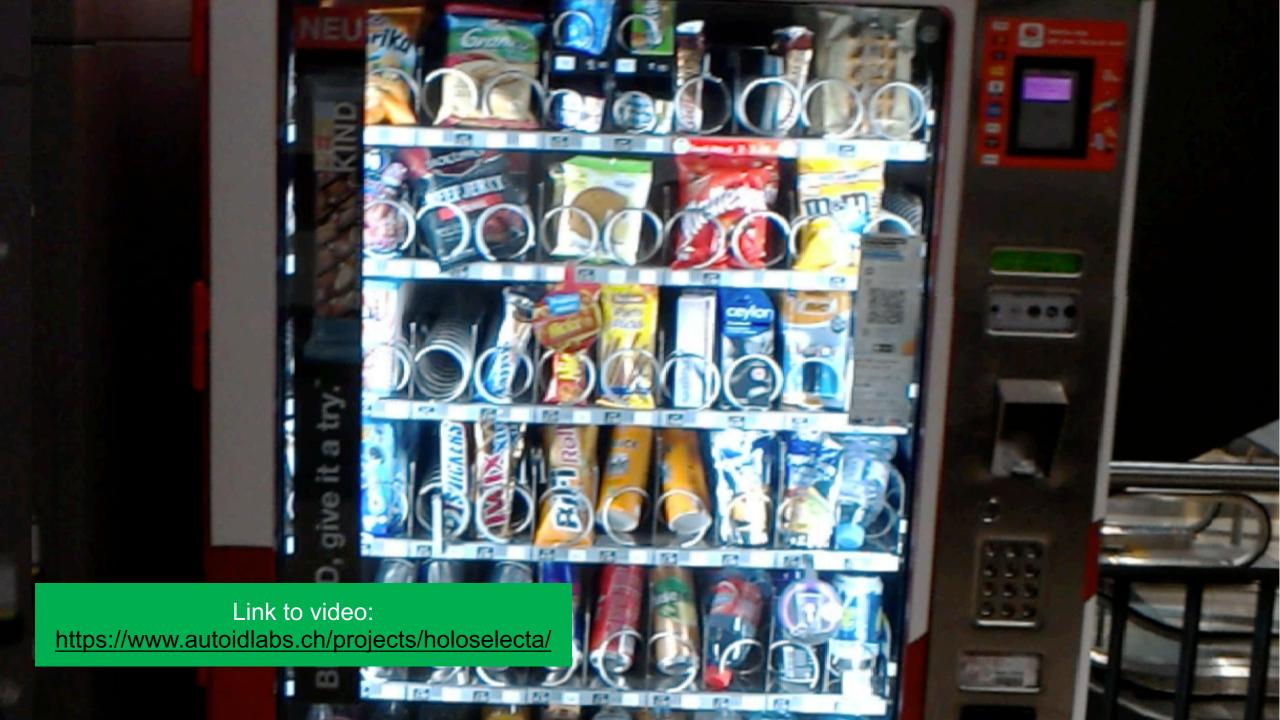
Randomized Controlled Trial Study (Image detection hard-coded)

Treatment Group

Balanced Sampling

4 Tasks: Select & Identify Healthiest / Snack & Beverage




Control Group

Just-in-Time Interventions as an Experiment

Results

Distribution of the participants in the study is overall balanced but not representative of Switzerland

61

Ø Age

29.8 J

42.2 Ø CH

% Overweight

21%

42 % CH

% Male

50 % CH

% Primary

19.7 %

11.6 % CH

Education

% Tertiary

52.5%

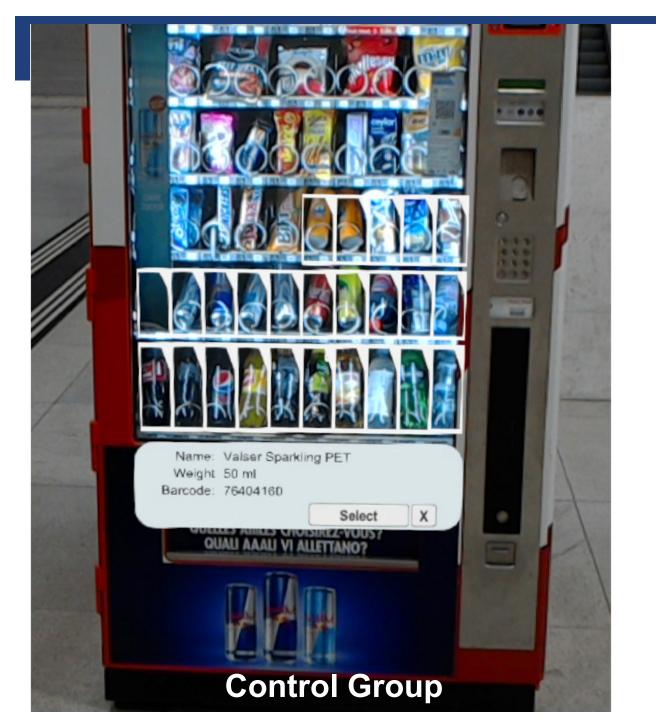
43.7 % CH

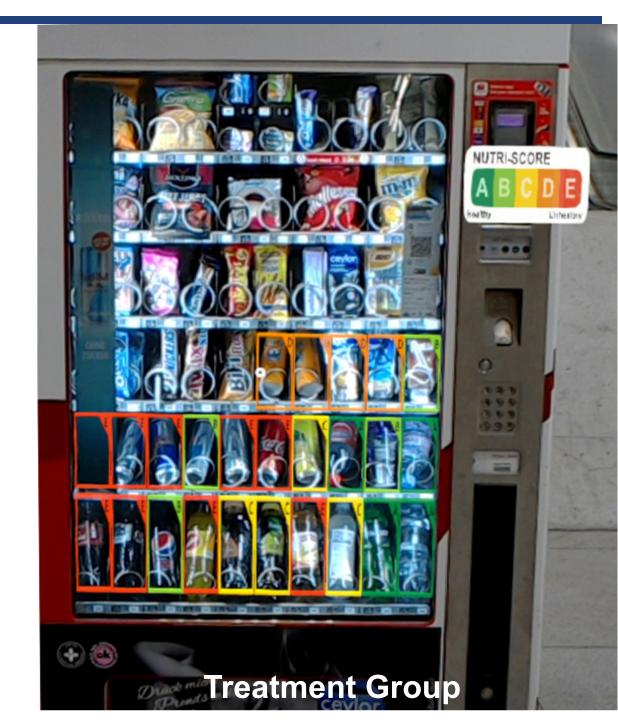
22

Observations on Positioning of Advertising

would have bought the BeKind if I would have known it is there

> Ohh, I didn't realize there are products behind that


Users don't realize there are products, behind the stickers. Move ads to the frame or between the products.


Btw what is the product behind that thing

That poster thing makes it really hard to see the product

Most products are easier to recognize by the top half then by the bottom half.

Study results indicate strong effects of the intervention on the choice of beverages.

Available Beverages:

Drinks	Mean (SD)
Weight (ml)	400 (118.3)
Price (CHF)	3.18 (0.61)
Drinks in VM by Nutri-Score	Count (%)
A (Healthy)	4 (20%)
В	4 (20%)
C	4 (20%)
D	4 (20%)
E (Unhealthy)	4 (20%)

Results: Beverages

Significant improvement:

- Nutri-Score (-15 = best ; 45 worst)
- Sugar

Non-significant, relative improvement:

Calories

All users can identify healthy beverages (mineral water), but intervention helps with salience & selection.

Table 3: Comparison between Treatment Group (N=31) and Control Group (N=30) for task 1) Select an item of your choice, task 2) Identify the healthiest beverage available.

Iter	Beverages				
Task	ΔTG-CG	P			
1. Select					
NS	-5.8	0.009*			
Energy	-11.4 (-34%)	.06			
Sat. Fat	+.02 (+66%)	.37			
Sugar	-1.91 (-28%)	0.049*			
Salt	0 (0%)	.43			
Protein	+ .11 (+48%)	.38			
Fiber	0 (0%)	.50			
2. Identify					
NS	-0.8	.27			
Energy	-1.26 (-67%)	.27			
Sat. Fat	0 (0%)	.16			
Sugar	-0.29 (-66%)	.28			
Salt	0 (0%)	.35			
Protein	-0.02 (-100%)	.16			
Fiber	0 (0%)	.50			
*: significant at 5% level					

Table 4: Nutrients of Selected Beverages for users differing in **BMI**, Education and Food Literacy

BMI							
	BMI >25kg/m ²			$BMI \le 25 kg/m^2$			
	P	TG	CG	P	TG	CG	
		N=7	N=3		N=22	N=26	
		M (SD)	M (SD)		M (SD)	M (SD)	
NS	0.010*	-12.7(6.1)	3.7(3.5)	.068	2.9(8.1)	5.0(8.1)	
EN	0.005*	0.4 (1.1)	41.3(23.6)	.41	28.8(20.6)	33.2(29.8)	
SF	0.017*	0.0(0.0)	0.2(0.3)	.07	0.1(0.2)	0.0(0.0)	
SU	0.003*	0.0(0.0)	7.8(3.0)	.28	6.4(4.3)	6.8(4.6)	
SO	.101	0.0(0.0)	0.0(0.0)	.28	0.0(0.0)	0.0(0.0)	
PR	0.017*	0.0(0.0)	1.7(2.5)	.23	0.5(1.3)	0.1(0.2)	
DF	0.5	0.0(0.0)	0.0(0.0)	0.5	0.0(0.0)	0.0(0.0)	
FNV	.10	0.0(0.0)	0.0(0.1)	.40	0.0(0.0)	4.6(16.3)	
Educa	Education						
		Education h	nigh	Education low			
	P	TG	CG	P	TG CG		
		N=17	N=15		N=12	N=14	
		M (SD)	M (SD)		M (SD)	M (SD)	
NS	.07	-3.3(10.5)	2.7(8.2)	0.049*	1.0(10.2)	6.6(6.7)	
EN	.29	21.2(24.0)	26.8(31.7)	.07	21.6(20.0)	39.4(25.2)	
SF	.24	0.1(0.2)	0.1(0.2)	.34	0.0(0.0)	0.0(0.0)	
SU	.31	4.4(4.7)	5.0(4.6)	.07	5.1(5.0)	8.4(3.4)	
SO	.45	0.0(0.0)	0.0(0.0)	.47	0.0(0.0)	0.0(0.0)	
PR	.40	0.6(1.5)	0.4(1.2)	.19	0.0(0.1)	0.1(0.2)	
DF	.50	0.0(0.0)	0.0(0.0)	0.5	0.0(0.0)	0.0(0.0)	
FNV	.43	0.0(0.0)	4.0(15.5)	.18	0.0(0.0)	4.3(16.0)	

Food Literacy (FL)						
	FL >3.5			FL ≤ 3.5		
	P	TG	CG	P	TG N=6	CG
		N=25	N=25			N=4
		M (SD)	M (SD)		M (SD)	M (SD)
NS	0.025*	-0.8(10.5)	4.6(8.1)	.13	-1.8(10.3)	6.0(4.9)
EN	.17	23.5(23.2)	32.7(30.3)	.052	16.0(14.6)	42.3(20.1)
SF	.31	0.1(0.2)	0.0(0.0)	.38	0.0(0.0)	0.2(0.3)
SU	.11	5.2(5.0)	6.5(4.6)	.052	3.7(3.4)	9.0(3.2)
SO	.30	0.0(0.0)	0.0(0.0)	0.033*	0.0(0.0)	0.0(0.0)
PR	.42	0.4(1.2)	0.1(0.2)	.38	0.1(0.2)	1.1(2.3)
DF	.50	0.0(0.0)	0.0(0.0)	.50	0.0(0.0)	0.0(0.0)
FNV	.10	0.0(0.0)	4.8(16.6)	.27	0.0(0.0)	0.0(0.0)
* •	.6					

^{* :} significant at 5% level, N varies as answers were skippable NS: Nutri-Score, EN: Energy in KJ/100ml, SF: Saturated Fat, SU: Sugar, SO: Sodium, PR: Protein, DF: Dietary fiber, FNV: Share of fruit/vegetable/nuts

P: P value, M: Mean, SD: Standard deviation Healthiest mean values for each nutrient in bold

Results

Significant improvement for:

- Users with high BMI, less education, high food literacy

Non-significant, relative improvement:

- All other users as well

Positive intention to use, performance expectation and social influence of intervention was confirmed

Table 5: Survey Comparison between Treatment Group (N=31) and Control Group (N=30)

Construct	TG (N=31)	CG (N=30)	<i>P(X)</i>			
(# Items)	mean (SD)	mean (SD)				
Usage Antecedents						
Intention (3)	5.84 (1.30)	4.98 (1.55)	.017			
Perf. Expect. (5)	5.44 (1.47)	3.53 (1.74)	<.001			
Social Infl. (2)	4.77 (1.51)	3.67 (1.44)	.0048			
Hedonism (2)	6.35 (0.79)	6.00 (1.17)	.27			
Unobserved (1)	5.23 (1.71)	4.79 (1.95)	.29			
Randomization Check	Randomization Checks					
Innovativeness (3)	5.80 (1.03)	5.60 (1.03)	.27			
Food Literacy (2)	5.02 (1.45)	5.11 (1.41)	.44			
Wearable Exp. (1)	0.79 (0.99)	0.55 (0.51)	.20			
Duration						
Time taken (sec.)	37.2 (20.0)	31.58 (13.7)	.12			
Perf. Expect.: Performance Expectancy, Social Infl.: Social						
Influence, Wearable Exp.: Experience w/ wearable headsets						

Conclusion

Passively triggered, Just-in time adaptive interventions via mixed reality headset are very promising (handsfree and automatic)

Computer vision is not easy, still lots of work to be done in order to support correct detection of most packaged products in the wild

Limitations lie in the supervision, one-time setup, limited availability of mixed reality headsets.

Discussion