

Scraping Social Media Photos Posted in Kenya and Elsewhere to Detect and Analyze Food Types ACM MM MADiMa Workshop 2019

5th International Workshop on Multimedia Assisted Dietary Management

Authors: Mona Jalal*, Kaihong Wang*, Sankara, Jefferson, Yi Zheng, Elaine Nsoesie, and Margrit Betke * Represents co-first authors

- Create a food/non-food dataset so that Kenyan food/nonfood classifiers that can detect Kenyan food
- Create a food type dataset to recognize Kenyan food types
- Using the metadata in social Instagram post for creating multimodal classifiers
- Why is our food type detection method that also incorporate the information from the caption is interesting and superior to other methods?

Introduction

- We propose Scrape-by-Location system and Scrape-by-Keywords system to collect two datasets: **Kenyan104K** and **KenyanFood13**.
- We propose a food/non-food classifiers trained on Kenyan104K: **KenyanFC** and a multimodal food type classifier trained on KenyanFood13: **KenyanFTR**.
- We apply our techniques to millions of Instagram posts and analyze food pattern in Kenya.

Related Work

	Food type datasets				
Dataset	# of classes	image per class	Total # of images	Style of food	
ETHZ Food-101	101	1,000	101,000	As, E, Am ¹	
UPMC Food-101	101	1,000	101,000	As, E, Am	
UEC-FOOD-100	100	$\sim \! 90$	9,060	Japanese	
UEC-FOOD-256	256	~ 127	31,397	Japanese	
VireoFood-172	172	~641	110,241	Chinese	
UNICT-FD889	889	${\sim}4$	3,583	As, E, Am	
UNICT-FD1200	1200	${\sim}4$	4,754	As, E, Am	
Food-524DB	524	~ 473	247,636	As, E, Am	
PFID	101	18	1,818	E, Am	
Food500	500	~ 300	150,000	As, E, Am	
NTU-FOOD	50	100	5,000	Chinese	
KenyanFood13	13	~629	8,174	Kenyan	

1 Asian (As), European (E), American (Am)

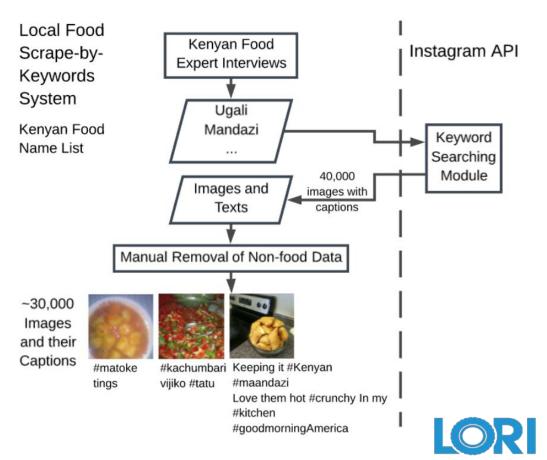
Proposed Scrape-by-Keyword System

- 38 initial keywords
- 40,000 initial images
- Manually removed non-food images
- Finally ended up with 30K Kenyan foods
- Merge keywords with duplicate meaning
- For each post we downloaded the:

BOSTON

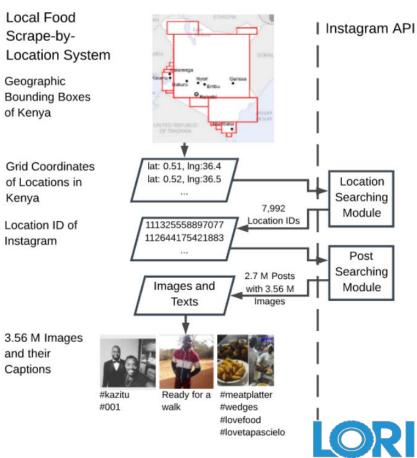
UNIVERSIT

- Image primary key,
- Image(s) and Image
 URL(s)
 Caption (if exists)



Proposed Scrape-by-Location System

- We defined a set of rectangular regions on Kenya
- For each point on the grid, we searched all nearby locations registered on Instagram for 20 days
- We retrieved the recent posts of each location ID
- For each post we downloaded the:
 - Image primary key,
 - Location ID
 - Image(s) and Image URL(s)
 - Caption (if exists)
 - Latitude and longitude of the location



A total of 3.56M images

Kenyan Food/Non-Food Dataset (Kenya104K)

- Kenyan104K has 52K food and 52K non-food images
- Adapted for classifying Kenyan food/non-food images
- Consists of 30,000 non-food images collected by our Scrape-by-Location method and 30,000 food images by our Scrape-by-Keyword system, both with manual inspection, along with 9,658 food images from Instagram Food Dataset (IFD) and 53,527 food and non-food images from FCD



Kenyan Food Type Dataset

- 13 food types
- ~629 images per class
- 8,174 images in total
- Created from an initial pool of 30K images retrieved by Scrape-by-Keyword methodology where "keywords" were popular Kenyan foods.
- Only 15 of the initial 38 Kenyan foods had more than 500 images in Instagram.
- There is no guarantee that images of a hashtag would contain the specific food
- \rightarrow We performed expert manual inspection for finalizing the food type dataset

Architecture of Food Type Recognition

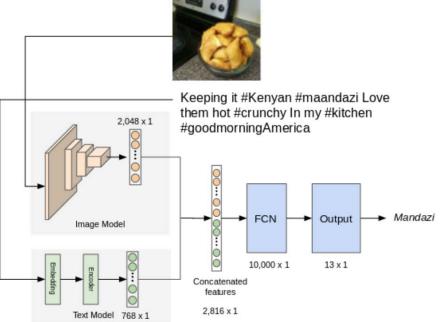
• We use BERT to extract feature vectors

from image captions (length: 768)

Image feature vector is created by

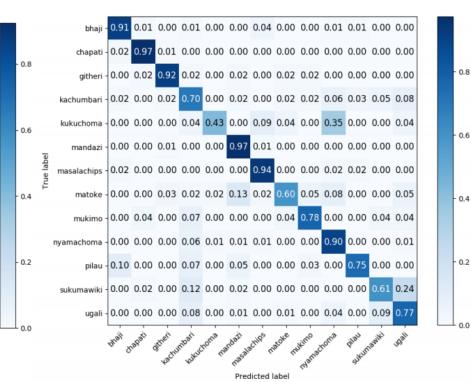
ResNext101 (length: 2,048)

• Pretrained on ImageNet dataset



 \rightarrow Eventually, we concatenate the language and image feature vectors using a fully connected network with 10K neurons and then pass it to an output layer with 13 classes.

Kenyan Food Type Recognition with/without Text



bhaji -0.05 0.05 0.02 0.44 0.00 0.03 0.02 0.03 0.02 0.08 0.03 0.05 0.19 kachumbari mandazi 0.04 0.03 0.00 0.00 0.00 0.91 0.03 0.00 0.00 0.00 0.00 0.00 0.00 True label masalachips -0.08 0.04 0.00 0.00 0.00 0.00 0.79 0.06 0.00 0.02 0.00 0.00 0.02 matoke - 0.13 0.00 0.02 0.02 0.00 0.05 0.03 0.63 0.02 0.03 0.02 0.00 0.05 nyamachoma 0.02 0.01 0.01 0.03 0.00 0.01 0.03 0.01 0.00 0.83 0.00 0.01 0.04 hapati Predicted label

> BOSTON UNIVERSITY

Some Preliminary Results on KenyanFood13

Method	Test Accuracy		
Method	Top-1	Top-3	
Image only	$73.18\% \pm 0.79\%$	$92.04\% \pm 0.44\%$	
Caption only	$65.30\% \pm 1.70\%$	83.68%± 1.55%	
KenyanFTR: Image + Caption	$81.04\% \pm 0.86\%$	$95.95\% \pm 0.44\%$	

Method	Test Accuracy		
Method	Top-1	Top-3	
InceptionV3+BERT	$71.92\% \pm 1.52\%$	$88.57\% \pm 0.68\%$	
InceptionV4+BERT	67.40%± 1.49%	85.05%± 1.93%	
ResNet101+BERT	$76.74\% \pm 2.02\%$	93.71%± 1.18%	
DenseNet161+BERT	$79.02\% \pm 0.96\%$	$95.14\% \pm 0.73\%$	
KenyanFTR: ResNeXt101+BERT	$81.04\% \pm 0.86\%$	$95.95\% \pm 0.44\%$	

Misclassifications when Trained on FCD and Tested on Kenyan104K

Non-food detected as food

Food detected as non-food

Most Confused Classes in KenyanFood13

- Computed the feature vector by chopping the last layer of a ResNet50
- Computed the L2 distance between each pair of feature vectors
- For example, Githeri and Matoke are visually very similar hence the L2 distance of their feature vectors are the smallest

