

Nice, France 21 - 25 October 2019

Ingredient-Guided Cascaded Multi-Attention

Network for Food Recognition

Weiqing Min^{1,2}, Linhu Liu^{1,2}, Zhengdong Luo^{1,2}, Shuqiang Jiang^{1,2} ¹Intelligent Information Processing, Institute of Computing Technology, CAS, China ²University of Chinese Academy of Sciences, China minweiqing@ict.ac.cn

Abstract	CASN		
 Algorithm. Achieve food recognition by developing an Ingredient-Guided Cascaded Multi-Attention Network. which is capable of sequentially localizing multiple informative image regions with multi-scale from category-level to ingredient-level guidance in a coarse-to-fine manner. Dataset. Introduce a new dataset ISIA Food-200 with 200 food categories from the list in the Wikipedia, about 200,000 food images and 319 ingredients. 	 A category-supervised STN is utilized: one Spatial Transformer Layer is added into one CNN network. One LSTM is introduced to combine with the following LSTMs to construct stacked LSTMs for sequential dependency modeling of localized regions. f₁ = ST(f₁, M₀) x₁ = relu(W_{fx} f₁ + b_x) h₁ = LSTM(x₁) z₁ = relu(W_{hz}h₁ + b_z) s₁ = W_{zs}z₁ + b_s M₁ = W_{zm}z₁ + b_m 		
Motivation	IASN		
 Image-level category labels only provide weak supervised information. CNNs trained with category labels can miss fine-grained food regions. Many types of food are non-rigid, and do not exhibit distinctive spatial 	> For each sub-network in IASN, it takes localized coarse region f_1 as the reference and used updated parameters M_{k-1} to discover fine-grained attentional regions.		

≻ Ma configuration and fixed semantic patterns. It is hard to capture discriminative semantic information from food images.

Figure.1 Some food samples with rich ingredients

- ✓ **Ingredient attributes**. Semantically meaningful ingredients, as basic units of food images, can offer one promising venue to empower a visual recognizer to arbitrary food images.
- ✓ Attentional regions. Diverse attentional regions over different image scales contain different level visual information.

Our Proposed Framework

Two Main Components:

• Category-supervised Attention Sub-network (CASN) : Discover coarse-level attention regions with category-supervision • Ingredient-supervised Attention Sub-network (IASN)

$$\begin{aligned} f_k &= \mathrm{ST}(f_1, M_{k-1}) & x_k = \mathrm{relu}(W_{fx}f_k + b_x) & h_k = LSTM(x_k) \\ z_k &= \mathrm{relu}(W_{hz}h_k + b_z) & s_k = W_{zs}z_k + b_s & M_k = W_{zm}z_k + b_m \end{aligned}$$

Multi-scale Joint Representation

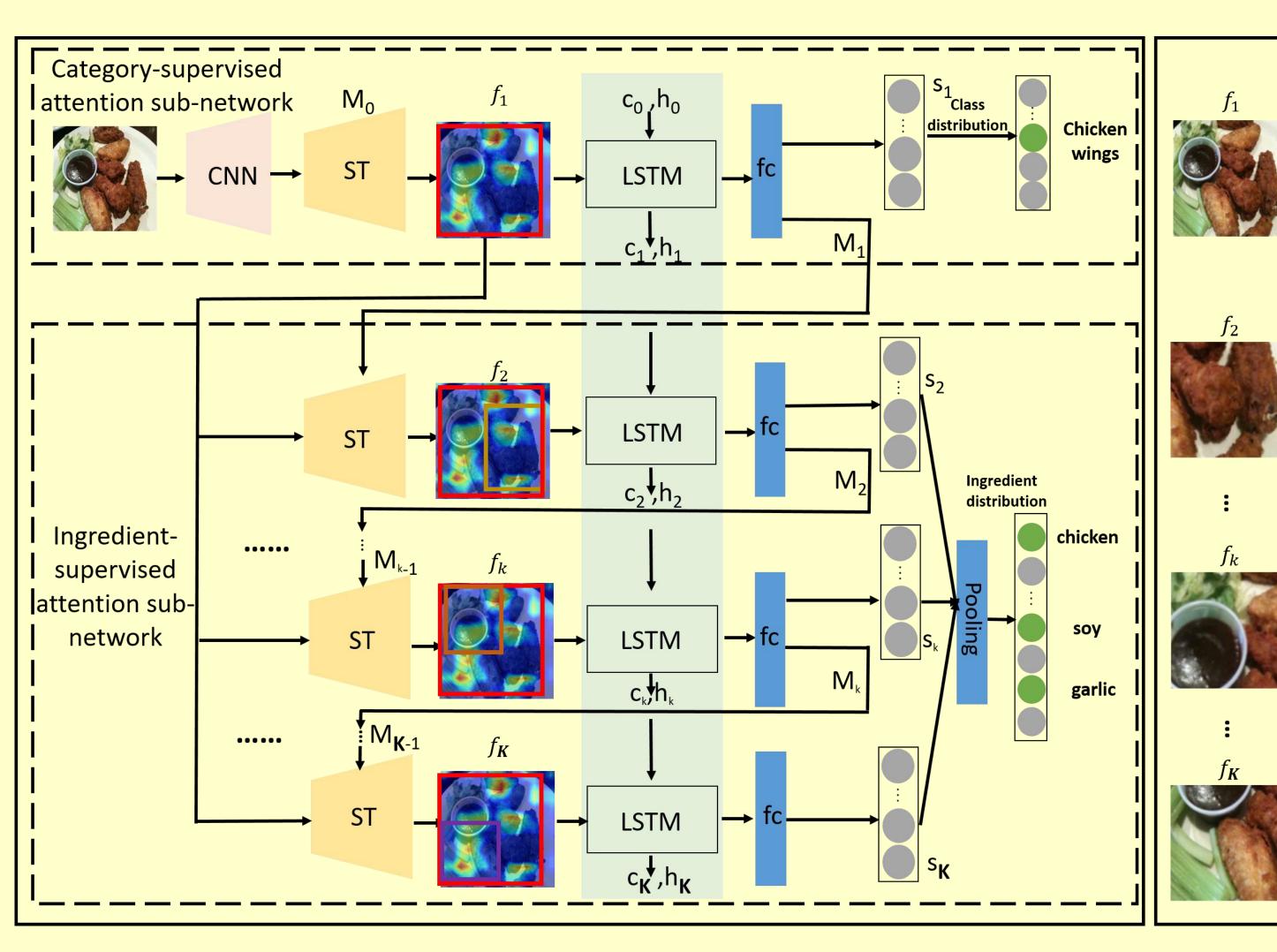
Extract three types of features from the full image, coarse region and fine-grained regions and concatenate them as the final feature representation.

ISIA Food-200

#Dataset	#Classes	#Images	#Ingredients
ETH Food-101	101	101,000	174
VireoFood-172	172	110,241	353
ISIA Food-200	200	197,323	319

Category: Bacon Category:Takoyaki Ingredient:flour,egg,pork, Ingredient:batter,octopus and_eggs Ingredient: bacon, sausage, tempura scraps, onion,

takoyaki


Category:Shuizhu Ingredient:glutinous Ingredient: meat.oil.chili rice, dried coconut, sugar

Ingredient:mashed mushroom soup ngredient:roux,cream potatoes, kale,cabbage milk, mushroom

Category:Kwetiau gorer ngredient:fried flat oodles,chicken,mea beef,prawn,crab

Figure 3: Some food samples from this dataset.

Discover fine-grained attention regions with ingredient-supervision

The dataset is available via Github

Experiments

Comparison of our model and state-of-		VireoFood-172				
the-art methods on ETH Food-101,		Method	Top-1	Top-5		
VireoFood-172, ISIA Food-200 (%).		AlexNet	64.91	85.32		
			VGG-16	80.41	94.59	
ETH Food-101		DenseNet-161	86.93	97.17		
Method	Top-1	Top-5	MultiTaskDCNN (VGG-16)	82.06	95.88	
AlexNet-CNN	56.4	-	MultiTaskDCNN	87.21	07.00	
DCNN-FOOD	70.41	-	(DenseNet-161) 8		97.29	
DeepFood	77.4	93.7	IG-CMAN(DenseNet-161)	90.63	98.4	
FCAN	86.5	-				
CurriculumNet	87.3	-	ISIA Food-200			
Inception V3	88.28	96.88	Method	Top-1	Top-5	
ResNet-200	88.38	97.85	AlexNet	49.34	79.3	
DenseNet-161	86.94	97.03	VGG-16	59.05	86.53	
WRN	88.72	97.92	ResNet-152	61.07	87.87	
WISeR	90.27	98.71	DenseNet-161	62.62	88.28	
IG-CMAN(DenseNet-161)	90.37	98.42	IG-CMAN(DenseNet-161)	67.47	91.75	

Top-1 Accuracy : State-of-the-art-performance in three datasets

Future Works

> We should build a large-scale ImageNet-level food dataset for providing critical

Figure 2: Overview of proposed framework for food recognition

training and benchmark data for food recognition algorithms.

 \succ We should promote food computing in the multimedia community for its

multifarious applications and services.