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Background and Aims

Direct computer vision based-nutrient content estimation is a demanding task, due to deformation and occlusions of ingredients, as well as
nigh intra-class and low inter-class variability between meal classes. In order to tackle these issues, we propose a system for recipe retrieval from
images, where the recipe representation is generated with the aid of Ingredient Attention (lA). Utilizing self-attention [1] and IA, we are able to

» directly process raw recipe text
 tackle the problem of high intra-class and low inter-class variability
* gain insight into which parts of instructions are of importance with respect to a certain ingredient list

Methodology

The main objective of our IA model is to align recipe representation and corresponding image representation (in terms of cosine similarity) in a
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Overview of our proposed Ingredient Attention based alignment network

Recipe1M+ [2]

Key Data By excluding instructions which are composed solely of punctuation or
* 1'029'720 recipes spaces, we were able to increase the effective train, validation and test set
. 13'735'679 images after image augmentation sizes using the same selection criteria as described.
* 1048 different food classes _ . _ . _ _
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Results
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occasionally until cooked through but firm to the bite 8 minutes drain melt 2
MedR RoO1 R@5 R@®10 _butter In a saucepan over medium heat stir in flour to make a
) roux slowly add milk to roux stirring constantly stir in cheddar and parmesan cheeses
INE 2] 001 | 259 20 gadk and cook over low heat until cheese iS fieliédand Saee s thick about
AdaMine [3] 3.0+0.7 331 64 3 752 3 minutes place macaroni in large baking dish and pour sauce over macaroni stir
) well melt _butter 1n a skillet over medium heat add breadcrumbs and
1A 2.9%0. 34.9 66.0 76.6 stir until butter is absorbed 2'to 3 minutes spread over macaroni to cover

Comparison between our two baseline implementations (Joint Neural _
Embedding JNE and AdaMine) and our novel IA GREBIGWRBHIBOUE30 minutes EOR
Qualitative results, such as attention heatmaps are a useful tool for Foci on instructions for a mac and cheese recipe based on IA. Dark
visualizing the networks thinking about how ingredients should be red means strong focus
processed.
Conclusions
« Utilizing self-attention empowers our model to directly process raw instruction input without any upstream instruction sentence

embedding

«  With IA, we are able to unveil internal focus in the text processing path by observing attention weights
* In future experiments we will demonstrate the power of IA for better handling high intra-class and low inter-class variability by not only
evaluation scores (MedR, R@K) but also with qualitative results such as attention heatmaps
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