### Recognition of food-texture attributes using an in-ear microphone

Vasileios Papapanagiotou<sup>1</sup>, Christos Diou<sup>1,2</sup>, Janet van den Boer<sup>3</sup>, Monica Mars<sup>4</sup>, Anastasios Delopoulos<sup>1</sup>

<sup>1</sup> Multimedia Understanding Group, Dpt. Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, Greece vassilis@mug.ee.auth.gr, adelo@eng.auth.gr

> <sup>2</sup> Department of Informatics and Telematics, Harokopio University of Athens cdiou@hua.gr

<sup>3</sup> Dpt. of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The Netherlands j.h.w.vandenboer@utwente.nl

> <sup>4</sup> Division of Human Nutrition and Health, Wageningen University monica.mars@wur.nl

25th International Conference on Pattern Recognition 6th International Workshop on Multimedia Assisted Dietary Management

- Chewing is one of the main ways of how we perceive food texture
- Some textures are generally perceived as more pleasant and desirable than others<sup>1</sup>
- Several studies show food texture and structure are becoming more important in understanding eating behavior, especially in food intake regulation and weight management 2

<sup>&</sup>lt;sup>1</sup>Aguayo-Mendoza, M.G., Ketel, E.C., van der Linden, E., Forde, C.G., Piqueras-Fiszman, B., Stieger, M.: Oral processing behavior of drinkable, spoonable and chewable foods is primarily determined by rheological and mechanical food properties. Food Quality and Preference 71, 87 – 95 (2019). https://doi.org/https://doi.org/10.1016/j.foodqual.2018.06.006

<sup>&</sup>lt;sup>2</sup>StribiTcaia, E., Evans, C.E.L., Gibbons, C., Blundell, J., Sarkar, A.: Food texture influences on satiety: systematic review and meta-analysis. Scientific Reports 10(1), 12929 (7 2020). https://doi.org/10.1038/s41598-020-69504-y

- Chewing is one of the main ways of how we perceive food texture
- Some textures are generally perceived as more pleasant and desirable than others<sup>1</sup>
- Several studies show food texture and structure are becoming more important in understanding eating behavior, especially in food intake regulation and weight management 2

As a result, automatically recognizing food texture can help

- understand human preference on food selection and help with weight management, as well as improve the nutrition content of diets
- understand consumer preference on food products and design more desirable products

<sup>&</sup>lt;sup>1</sup>Aguayo-Mendoza, M.G., Ketel, E.C., van der Linden, E., Forde, C.G., Piqueras-Fiszman, B., Stieger, M.: Oral processing behavior of drinkable, spoonable and chewable foods is primarily determined by rheological and mechanical food properties. Food Quality and Preference 71, 87 – 95 (2019). https://doi.org/https://doi.org/10.1016/j.foodqual.2018.06.006

<sup>&</sup>lt;sup>2</sup>StribiTcaia, E., Evans, C.E.L., Gibbons, C., Blundell, J., Sarkar, A.: Food texture influences on satiety: systematic review and meta-analysis. Scientific Reports 10(1), 12929 (7 2020). https://doi.org/10.1038/s41598-020-69504-y

Food-texture attributes as presented and organized in <sup>3</sup>, and their correspondence with the food-attributes used in this work.

| Attributes                                     | Crisp        | Wet       | Chewy         |  |
|------------------------------------------------|--------------|-----------|---------------|--|
| Attributes related to sur                      | face attrik  | outes and | l springiness |  |
| wetness                                        | X            | 1         | ×             |  |
| adhesiveness to lips                           | X            | X         | ×             |  |
| roughness                                      | 1            | X         | ×             |  |
| self-adhesiveness                              | X            | X         | 1             |  |
| springiness                                    | 1            | ×         | ×             |  |
| Attributes assessed dur                        | ring masti   | cation    |               |  |
| cohesiveness of mass                           | $\checkmark$ | ×         | ×             |  |
| moisture absorption                            | X            | 1         | ×             |  |
| adhesiveness to teeth                          | ×            | X         | 1             |  |
| Attributes assessed during manual manipulation |              |           |               |  |
| manual adhesiveness                            | X            | ×         | X             |  |

<sup>&</sup>lt;sup>3</sup>Muñoz, A.M.: Development and application of texture reference scales. Journal of Sensory Studies 1(1), 55–83 (1986). https://doi.org/10.1111/j.1745459X.1986.tb00159.x

Food-texture attributes as presented and organized in <sup>3</sup>, and their correspondence with the food-attributes used in this work.

| Attributes                | Crisp       | Wet       | Chewy         |
|---------------------------|-------------|-----------|---------------|
| Attributes related to sur | face attrib | outes and | l springiness |
| wetness                   | X           | 1         | ×             |
| adhesiveness to lips      | X           | X         | ×             |
| roughness                 | 1           | X         | ×             |
| self-adhesiveness         | X           | X         | 1             |
| springiness               | 1           | X         | ×             |
| Attributes assessed dur   | ring masti  | cation    |               |
| cohesiveness of mass      | ✓           | ×         | ×             |
| moisture absorption       | X           | 1         | ×             |
| adhesiveness to teeth     | X           | ×         | 1             |
| Attributes assessed du    | ring manu   | al manip  | oulation      |
| manual adhesiveness       | x           | x         | x             |

<sup>&</sup>lt;sup>3</sup>Muñoz, A.M.: Development and application of texture reference scales. Journal of Sensory Studies 1(1), 55–83 (1986). https://doi.org/10.1111/j.1745459X.1986.tb00159.x

Food-texture attributes as presented and organized in <sup>3</sup>, and their correspondence with the food-attributes used in this work.

| Attributes              | Crisp     | Wet    | Chewy        |
|-------------------------|-----------|--------|--------------|
| Attributes assessed dur | ing masti | cation |              |
| cohesiveness of mass    | 1         | X      | ×            |
| moisture absorption     | ×         | 1      | ×            |
| adhesiveness to teeth   | ×         | X      | $\checkmark$ |

Multi-label formulation of the food-texture attribute recognition problem.

| Label value | Crispiness label | Wetness label | Chewiness label |
|-------------|------------------|---------------|-----------------|
| 1           | crispy           | wet           | chewy           |
| 0           | non-crispy       | dry           | non-chewy       |

<sup>&</sup>lt;sup>3</sup>Muñoz, A.M.: Development and application of texture reference scales. Journal of Sensory Studies 1(1), 55–83 (1986). https://doi.org/10.1111/j.1745459X.1986.tb00159.x

## The chewing sensor

- In-ear microphone (Knowles FG-23329-D65), captures at 48 kHz
- A PPG sensor (New Balance NB439B), not used in this work





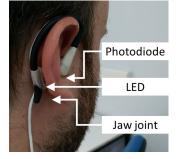



Figure: The ear-worn device with the microphone and PPG sensor.

Figure: The belt-mounted device with 3D accelerometer and data-logger.

Figure: PPG placement in ear.

Created within the context of the EU funded SPLENDID project. https://splendid-program.eu/

# Chew-level recognition algorithm

- Pre-processing
  - 1 Down-sampling (tested 2, 4, 8, 16, and 32 kHz, selected 8 kHz)
  - 2 High-pass filtering at 20 Hz

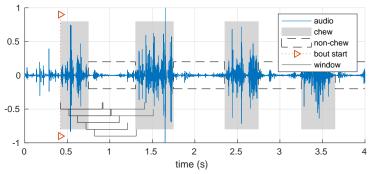
- Pre-processing
  - 1 Down-sampling (tested 2, 4, 8, 16, and 32 kHz, selected 8 kHz)
  - 2 High-pass filtering at 20 Hz
- 2 Feature extraction
  - **1** Features per chew audio segment, as in Table  $(0.56 \pm 0.15 \text{ s duration})$
  - **2** Feature standardization:  $f_{norm}[i] = (f[i] \mu_i)/\sigma_i$

Table: Audio features.

|   | Feature                    | Dimension | Window |
|---|----------------------------|-----------|--------|
| 1 | Energy of log sectral band | 9         | 0.2 s  |
| 2 | Fractal dimension          | 1         | 0.1 s  |
| 3 | Condition number           | 1         | 0.1 s  |
| 4 | Skewness $m_3((0,0))$      | 1         | 0.1 s  |
| 5 | Kurtosis $m_4((0, 0, 0))$  | 1         | 0.1 s  |
| 6 | Moment $m_4((0, 1, 1))$    | 1         | 0.1 s  |
| 7 | Moment $m_4((0, 2, 2))$    | 1         | 0.1 s  |

- Pre-processing
  - 1 Down-sampling (tested 2, 4, 8, 16, and 32 kHz, selected 8 kHz)
  - 2 High-pass filtering at 20 Hz
- 2 Feature extraction
  - 1 Features per chew audio segment, as in Table ( $0.56 \pm 0.15$  s duration)
  - **2** Feature standardization:  $f_{norm}[i] = (f[i] \mu_i)/\sigma_i$
- 3 Classification (per chew)
  - 1 Binary SVMs, one SVM per food attribute: crispiness, wetness, and chewiness
  - 2 RBF kernel
  - 3 Parameters C and  $\gamma$  are selected automatically using Bayesian optimization in a 5-fold cross-validation

|   | Feature                    | Dimension | Window |
|---|----------------------------|-----------|--------|
| 1 | Energy of log sectral band | 9         | 0.2 s  |
| 2 | Fractal dimension          | 1         | 0.1 s  |
| 3 | Condition number           | 1         | 0.1 s  |
| 4 | Skewness $m_3((0,0))$      | 1         | 0.1 s  |
| 5 | Kurtosis $m_4((0, 0, 0))$  | 1         | 0.1 s  |
| 6 | Moment $m_4((0, 1, 1))$    | 1         | 0.1 s  |
| 7 | Moment $m_4((0, 2, 2))$    | 1         | 0.1 s  |


Table: Audio features.

# Bout-level recognition algorithm

- 1 Pre-processing
- 2 Feature extraction
  - Same chew-based features
    - ground truth bouts: 15.22 ± 10.7 s duration
    - windows: 0.5 s size, 0.1 s step
  - 2 Feature standardization
- Bag-of-words
  - On the chew-based features
  - 2 Normalized histogram across the chewing bout as the final feature vector
- 4 Classification (per bout)

# Bout-level recognition algorithm

- 1 Pre-processing
- 2 Feature extraction
  - Same chew-based features
    - ground truth bouts: 15.22 ± 10.7 s duration
    - windows: 0.5 s size, 0.1 s step
  - 2 Feature standardization
- Bag-of-words
  - On the chew-based features
  - 2 Normalized histogram across the chewing bout as the final feature vector
- 4 Classification (per bout)



### **Evaluation levels**

- Chew-level evaluation
  - for chew-level recognition algorithm
- Bout-level evaluation
  - chew-level recognition algorithm with majority voting
  - chew-level recognition algorithm with majority voting over the *n* first chews (of each bout)
  - bout-level recognition algorithm

#### Evaluation levels

- Chew-level evaluation
  - for chew-level recognition algorithm
- Bout-level evaluation
  - chew-level recognition algorithm with majority voting
  - chew-level recognition algorithm with majority voting over the *n* first chews (of each bout)
  - bout-level recognition algorithm

Evaluation methods

- LOSO: leave one subject out
- LOFTO: leave one food-type out

### **Evaluation levels**

- Chew-level evaluation
  - for chew-level recognition algorithm
- Bout-level evaluation
  - chew-level recognition algorithm with majority voting
  - chew-level recognition algorithm with majority voting over the *n* first chews (of each bout)
  - bout-level recognition algorithm

#### Evaluation methods

- LOSO: leave one subject out
- LOFTO: leave one food-type out

Evaluation metrics:

- Accuracy (per food attribute)
- Weight accuracy (per food attribute)

### Dataset

- Collected at Wageningen University, Netherlands, in the context of the EU-funded SPLENDID project
- Recording apparatus: in-ear microphone (Knowles FG-23329-D65) connected via wire to a computer audio interface
- Sensor housing and recording by CSEM S.A.

- Collected at Wageningen University, Netherlands, in the context of the EU-funded SPLENDID project
- Recording apparatus: in-ear microphone (Knowles FG-23329-D65) connected via wire to a computer audio interface
- Sensor housing and recording by CSEM S.A.
- In total, 21 subjects were enrolled for the data collection trials, however, signals from only 9 could be used in this work due to problems with data acquisition (such as incorrect sensor placement or corrupted audio due to hardware/software malfunction)
- Each subject consumed a variety of food types

- Collected at Wageningen University, Netherlands, in the context of the EU-funded SPLENDID project
- Recording apparatus: in-ear microphone (Knowles FG-23329-D65) connected via wire to a computer audio interface
- Sensor housing and recording by CSEM S.A.
- In total, 21 subjects were enrolled for the data collection trials, however, signals from only 9 could be used in this work due to problems with data acquisition (such as incorrect sensor placement or corrupted audio due to hardware/software malfunction)
- Each subject consumed a variety of food types
- Ground truth was manually created based on visual inspection of the audio signals and experimental logs

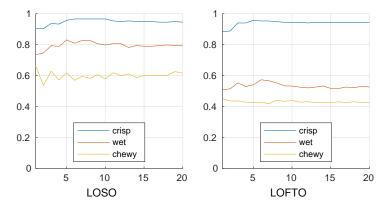

|                 | Prior      | Weighted accuracy |
|-----------------|------------|-------------------|
| Chew level      |            |                   |
| crispy (avg)    | 0.4707     | 0.9068            |
| crispy (sum)    | 0.4666     | 0.9017            |
| wet (avg)       | 0.4280     | 0.7516            |
| wet (sum)       | 0.4235     | 0.7503            |
| chewy (avg)     | 0.1741     | 0.5994            |
| chewy (sum)     | 0.1746     | 0.6212            |
| Majority voting | ı per bout |                   |
| crispy (avg)    | 0.4943     | 0.9519            |
| crispy (sum)    | 0.5063     | 0.9496            |
| wet (avg)       | 0.4850     | 0.7978            |
| wet (sum)       | 0.4937     | 0.7900            |
| chewy (avg)     | 0.1666     | 0.6296            |
| chewy (sum)     | 0.1632     | 0.6154            |

Table: LOSO results for chew-level recognition.

|                 | Prior      | Weighted accuracy |
|-----------------|------------|-------------------|
| Chew-level      |            |                   |
| crispy (sum)    | 0.4666     | 0.8987            |
| wet (sum)       | 0.4235     | 0.5481            |
| chewy (sum)     | 0.1746     | 0.3957            |
| Majority voting | n per bout |                   |
| crispy (sum)    | 0.4957     | 0.9446            |
| wet (sum)       | 0.4829     | 0.5046            |
| chewy (sum)     | 0.1667     | 0.4179            |

Table: LOFTO results for chew-level recognition.

## Results



Weighted accuracy for each attribute for the LOSO and the LOFTO experiments.

|              | Prior  | Weighted accuracy |
|--------------|--------|-------------------|
| LOSO         |        |                   |
| crispy (avg) | 0.4967 | 0.9541            |
| crispy (sum) | 0.5084 | 0.9534            |
| wet (avg)    | 0.4869 | 0.7865            |
| wet (sum)    | 0.4958 | 0.7900            |
| chewy (avg)  | 0.1625 | 0.5200            |
| chewy (sum)  | 0.1597 | 0.5238            |
| LOFTO        |        |                   |
| crispy (sum) | 0.5084 | 0.9288            |
| wet (sum)    | 0.4958 | 0.6422            |
| chewy (sum)  | 0.1597 | 0.4970            |

Table: Results for bout-level recognition.

- Algorithms for automatic recognition of 3 food-texture attributes, namely crispiness, wetness, and chewiness
  - per chew recognition
  - per bout recognition
- Evaluation in LOSO and LOFTO approach
- High recognition for crispiness, promising results for wetness and chewiness

Thank you