

Bhalaji Nagarajan¹, Eduardo Aguilar^{1,2} and Petia Radeva^{1,3} ¹Universitat de Barcelona, Barcelona, Spain ²Universidad Católica del Norte, Antofagasta, Chile ³Computer Vision Center, Cerdanyola (Barcelona), Spain

- Introduction
 - Proposed Methodology
 - S2ML-TL Framework
 - Class Priors
 - Prior-Induced Loss Function
 - Prior Computation
 - Validation
 - Datasets and Evaluation Metrics
 - Implementation Details
 - Hyper-parameter Selection
 - Results and Discussion
 - Ablation Study
 - Conclusions

Introduction

3

B.Nagarajan et al.

Introduction

4

- Food Recognition and its challenges
- Transfer Learning
 - Problem of data dependency
 - Negative transfer and Covariate shift
- Multi-Stage TL exploits learned representations from similar easier task on a complex task.

- S2ML-TL: Single to Multi-Label Transfer Learning Framework
 - Multi-Label Food Recognition using Single-Label Classifiers
- Class priors to help in selection of positive samples for better transferability

Proposed Methodology

B.Nagarajan et al.

6

S2ML-TL Framework

Traditional TL (Fine-tuning) vs S2ML-TL Framework

8

- Generalization of deep networks is difficult due to dataset bias
- Class conditional probabilities define distributions of samples in a domain
- Class priors make learning algorithms more robust to shifts

Prior-Induced Loss Function

Prior induced loss function $I_p(x,y)$ is given by $l_p(x,y) = \frac{1}{C} \sum_{c=1}^{C} \left[y_i \cdot \log(p(y_i)) + (1-y) \cdot \log(1-p(y_i)) \right] * r_i^b$ $r_i^b = \beta \left[\alpha \frac{P_T}{P_S} + (1-\alpha) P_T \right]$

• P_T/P_s - Ratio of Priors

•

- α control the impact of source distribution
- *B* correction constant

Prior Computation

 $P(T_i)$ - probability of each class, i, in the multi-label datasets $P(T_i) = \frac{1}{N_t} \sum_{n=1}^{N_t} y_i^n$

 $P(S_i)$ - sum of probabilities of all classes, where the target class is present

 $P(S_i) = \frac{1}{N_s} \sum_{i} \sum_{j=1}^{N_s} y_j, \qquad j \in \{all \text{ souce classes containing } i\}$

B.Nagarajan et al.

Datasets and Evaluation Metrics

Single-label

Food101

Food201

Combo-plates

Evaluation Metrics

• Precision, Recall and F1-Score

Implementation Details

- Validated using Resnet50 and InceptionResnetV2
- Training single-label images initialized with ImageNet weights
- Training multi-label images
 - Initialized with ImageNet weights (for standard TL)
 - Initialized with Single-label image weights
 - compared with BCE, prior-induced BCE and KL based BCE
- Parameters
 - Image size: 224 x 224, Batch size: 24
 - Adadelta optimizer with an initial learning rate of 1
- Keras framework with Tensorflow backend

Hyper-parameter Selection

Performance with different α values

Loss curves with varying β values at $\alpha=0$ and $\alpha=0.75$

14

Model	Val. data			Test data			
	Prec. Recall		F1	Prec.	Recall	F1	
Standard TL	0.7209	0.5865	0.6468	0.7152	0.5840	0.6430	
ERM	0.6991	0.5667	0.6260	0.6900	0.5700	0.6200	
KL	0.7030	0.6212	0.6596	0.6984	0.6173	0.6553	
Priors	0.7045	0.6229	0.6612	0.7000	0.6200	0.6600	

Model Performance of InceptionResnetV2 on Combo-plates

Model Performance of Resnet50 on Combo-plates

Model	Val. data			Test data			
	Prec. Recall		F1	Prec.	Recall	F1	
Standard TL	0.7250	0.5581	0.6307	0.7200	0.5582	0.6289	
BCE	0.7268	0.5590	0.6320	0.7223	0.5616	0.6319	
KL	0.6956	0.5473	0.6126	0.6933	0.5491	0.6128	
Priors	0.6861	0.5783	0.6276	0.6882	0.5886	0.6345	

B.Nagarajan et al.

Results and Discussion

Model	Val. date	a				
	Prec.	Recall	F1	Prec.	Recall	F1
Standard TL	0.6800	0.4595	0.5485	0.6997	0.5001	0.5833
ERM	0.7936	0.5354	0.6394	0.7895	0.5563	0.6527
KL	0.7521	0.4755	0.5826	0.7567	0.5044	0.6053
Priors	0.8189	0.6176	0.7041	0.7464	0.5550	0.6366

Model Performance of InceptionResnetV2 on Food201

Model Performance of Resnet50 on Food201

Model	Val. dato	נ		Test data			
	Prec. Recall		F1	Prec.	Prec. Recall		
Standard TL	0.7204	0.4215	0.5319	0.7322	0.4636	0.5678	
ERM	0.7518	0.4546	0.5666	0.7493	0.4800	0.5852	
KL	0.7918	0.4317	0.5587	0.7740	0.4370	0.5586	
Priors	0.7767	0.5877	0.6691	0.7313	0.5400	0.6213	

B.Nagarajan et al.

Results and Discussion

InceptionResnetV2 on Combo-plates

InceptionResnetV2 on Food201

B.Nagarajan et al.

S2ML-TL Framework for Multi-Label Food Recognition

17

Model	a * (P _T /P _S)	P _T	β	Val. data			Test data		
				Prec.	Recall	F1	Prec.	Recall	F1
a=1 (w/o β)	Х	-	-	0.7537	0.5685	0.6481	0.7394	0.5666	0.6415
a=1 (w β)	х	-	х	0.7237	0.6012	0.6568	0.7200	0.6000	0.6500
Decayed a (w/o β)	Х	-	-	0.7281	0.5958	0.6553	0.7112	0.5932	0.6469
Decayed a (w β)	х	-	х	0.7118	0.6094	0.6567	0.6963	0.6086	0.6495
Target Priors (w/o β)	-	х	-	0.6972	0.6238	0.6585	0.6811	0.6140	0.6458
Target Priors (w β)	-	х	х	0.7092	0.6068	0.6540	0.7050	0.5994	0.6479
Proposal (w/o β)	Х	Х	-	0.6996	0.6034	0.6480	0.7045	0.6069	0.6521
Proposal (w β)	X	x	x	0.7114	0.6349	0.6710	0.7011	0.6127	0.6539

Conclusions

19

B.Nagarajan et al.

- - S2MI-TL framework for multi-label food recognition was achieved using single-label food recognition as an intermediate task
 - Validation with two multi-label datasets showed increased learnability of the models
 - Class priors further boosted the recognition performance.
 - Various hyper-parameter selection decisions were discussed with empyrical evidences.
 - Future Scope:
 - Extending the framework for long-tail problem

Acknowledgements

This work was partially funded by TIN2018-095232-B-C21, SGR-2017 1742, Nestore project of the European Commission Horizon 2020 programme (Grant no.769643), Validithi EIT Health, Greenhabit EIT Digital program and CERCAProgramme/Generalitat de Catalunya. We acknowledge the support of NVIDIACorporation with the donation of the Titan Xp GPUs.