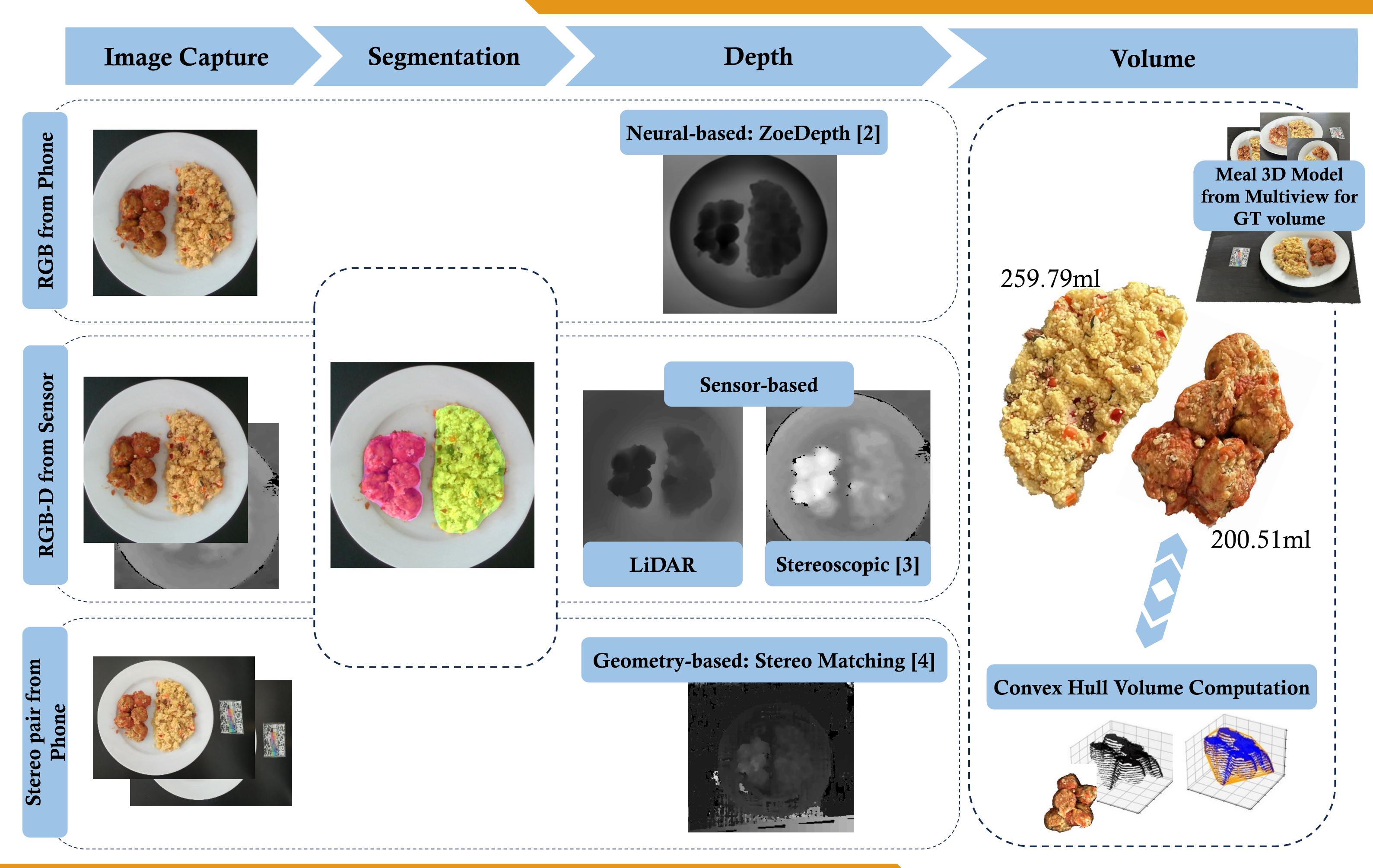
A Comparative Analysis of Sensor-, Geometry-, and MADIMa 2023 Neural-Based Methods for Food Volume Estimation

and U, Papathanail¹, Lorenzo Brigato¹, Ioannis Rahman¹, Lubnaa Abdur Stavroula Mougiakakou¹ **UNIVERSITÄT**

¹University of Bern, Bern, Switzerland

Background and aims


- Automatic food volume estimation persists as a challenge with error rates as high lacksquareas 85% [1].
- This study undertook a comparison of different methods for automatic food volume estimation harnessing depth maps as a pivotal component.
- A comprehensive dataset of 20 meals, captured at varying distances (40cm and 60cm) was curated encompassing reliable ground truth volumes, RGB images, and corresponding depth maps.

BERN

Methods

Results and Conclusions

• LiDAR consistently outperforms other methods, offering

Method	Plastic		Real	
	40 cm	60 cm	40 cm	60 cm
Stereoscopic sensor	26.15	36.41	25.06	41.07
LiDAR sensor	21.32	22.76	17.45	16.40
Geometry-based	30.54	29.99	27.21	23.57
Neural-based	30.40	35.61	26.41	30.25

reliability and flexibility.

- The stereoscopic sensor, ranking second at 40cm, could be ideal for controlled environments.
- The geometry-based method excels particularly at 60cm.
- Neural-based approach shows promise, needing only one image and no specific hardware but may benefit from further fine-tuning.

Acknowledgments

This work was partly supported by the European Commission and the Swiss Confederation - State Secretariat for Education, Research and Innovation (SERI) within the project 101057730 Mobile Artificial Intelligence Solution for Diabetes Adaptive Care (MELISSA)

Table 1: Mean absolute percentage errors with different methods

References

[1] https://doi.org/10.3390/healthcare11010059 [2] https://doi.org/10.48550/arXiv.2302.12288 [3] https://doi.org/10.3390/nu13124539 [4] https://doi.org/10.3390/s20154283