

MADIMa 2023

An Improved Encoder-Decoder Framework for Food Energy Estimation

Jack Ma, Jiangpeng He, and Fengging Zhu **Elmore Family School of Electrical and Computer Engineering**, **Purdue University, USA**

Introduction

• Dietary assessment involves evaluating someone's nutritional intake (e.g. food energy consumption), towards identifying nutrient deficiencies and reducing metabolic disorder risks

Our Method

We employ an encoder-decoder model for caloric estimation. Encoder aims to embed caloric information into a per-pixel caloric density map for corresponding pixels in image. Decoder extracts caloric information from the encoded representation.

Experimental Results

> Comparison of methods in terms of mean absolute error (MAE) and mean absolute percent error (MAPE).

	MAE (kCal)	MAPE (%)
Grayscale [1]	183.5	48.5
Image Only [2]	287.7	61.2
Density Map + Image, LN + GN [2]	219.1	54.9
Density Map + Image, LN [2]	208.4	58.3
0	150 5	25 7

A. Underestimate Ground truth: 514 Estimated: 427

C. Accurate Estimate E. Overestimate Ground truth: 494 Ground truth: 547 Estimated: 506 Estimated: 780

- Our work lies in the realm of automatic food energy estimation from a single monocular image due to its simplicity for the user
- Recent methods (e.g. [1]) employ an encoderdecoder model, where the encoder transforms the hard-to-extract image into a grayscale representing per-pixel caloric density that a regression decoder can extract calories from easier, but these methods have the following drawbacks:

Dataset

 Compile and prune different datasets to obtain 175 images with associated seg mask/calorie value for each food item in image

10 kCal

Berry Muffin

252 kCal

Chocolate Chip Muffin 183 kCal

Ours

35.7 150.5

> Our summation decoder compared against different regression decoders employing VGG16, Resnet18, and Resnet50

	Pretrained	MAE (kCal)	MAPE (%)
VGG16	1	166.3	38.5
VGG16	×	155.5	37.9
Resnet18	1	231.8	54.7
Resnet18	×	149.3	35.4
Resnet50	1	173.3	37.52
Resnet50	×	154.0	34.5
Ours	N/A	150.5	35.7

> Comparison between the tensor density map and grayscale as the encoded representation. **Experiments are run using the pipeline from** [1] because it achieves the best performance out of all methods using a grayscale.

- Inherent limitations with grayscale due to insufficient storage capacity and granularity since values are confined to integers from 0 to 255
- **Q**Regression decoders add complexity to the pipeline and don't improve performance (as seen in results)
- In this work, we propose an improved encoderdecoder model that addresses the limitations of prior work and improves upon existing methods by over 10% MAPE and 30 kCal MAE

Density Map Generation

• For each image, generate tensor d_i from seg mask s_i and calorie value c_i for each food item iin image having dimensions h by w (w_i is number of foreground pixels in seg mask S_i):

• For all 1
$$d_i[x, y] = \begin{cases} 0 & s_i[x, y] = 0 \\ c_i/w_i & \text{otherwise} \end{cases}$$

- Obtain tensor density map d by concatenating all d_i
- Note that the sum of all pixel values in d is precisely $c = \sum c_i$

Encoder

Ours

Fang et al.

• Train Conditional GAN (cGAN) to learn mapping between images and their tensor density maps. The trained cGAN then generates density maps

	MAE (kCal)	MAPE (%)
Tensor Density Map (Ours)	166.3	38.5
Grayscale	183.5	48.5

Exemplary tensor density maps generated by the cGAN encoder (top right), along with the ground truth tensor density map (bottom right) and original image (left) for comparison

Conclusion and Future Work

Distribution of the energy estimation errors for our method in comparison to the next best method

that decoder can extract calories from

Decoder

 Employ simple summation decoder that obtains calorie value c by adding up all values in tensor density map d' generated by the encoder. We can directly use this decoder, unlike the regression decoders in previous work that require training

- We proposed an improved encoder-decoder framework for food energy estimation from a single monocular image, which achieves big performance improvements over existing work
- Our future work will focus on improving the decoding portion of the pipeline because the decoder employed in our method is simple and still has a large room for more complexity

[1] Fang et al., An End-to-End Image-Based Automatic Food Energy Estimation Technique Based on Learned Energy Distribution Images: Protocol and Methodology, Nutrients 2019

[2] Shao et al., Towards Learning Food Portion From Monocular Images With Cross-Domain Feature Adaptation, *MMSP* Workshop 2021