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(RGB-D for evaluations only, not needed at runtime)
* Subjects: 24 (12 male, 12 female)
* Activities: 12 (3 eating, 3 drinking, and 6 other)
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Motivation Motivation Motivation
* MARS?s 2-layer CNN - higher error ¢ F|A3 struggles to strike a balance * Combining CNN and LSTM could be
* Too many layers = overfitting between voxel size and memory computationally heavy
Proposed Solutions consumption Proposed Solutions
* Test popular models Proposed 5°|Utlf>n5 | * Feature vectors > LSTM
(AlexNet, GoogLeNet, ResNet) * SPE’'s 8x8 grid + CNN - spatial features e E|iminate the CNNs
* Carefully decide the model depths  * LSTM - temporal features Evaluations - 80-20 train-test split
Evaluations Evaluations * Accuracy = 99.81% (0.15% improvement
* ResNet-34 has the highest accuracy *® Accuracy = 99.66% (4.10% improvement over DPR)
(45.16% reduction over MARS) over FIA) * Memory = 1219 MiB (42.8% reduction
* ResNet-34 outperforms its 18- and * Memory = 2131 MIB (78.29% reduction over DPR)
50-layer counterparts over FlA) Evaluations - Leave-one-out

* Accuracy = 40.77~86.97% (average
@ KEYFINDINGS @ 72.74%) °

: . : °* Mimic the situations of new subjects
mmWave point clouds can be used for fine-grained

activity recognition, offering privacy advantages
Model structures and depths need to be chosen properly

to suilt different tasks (e.g., rehabilitation vs. food intake) UNGUING TASKS

MARS's preprocessing can also be used for activity
recognition without skeletons * Further improving the precision of the estimated skeletons

Using feature vectors without CNNs reduces overhead * Enhancing model generalization to recognize activities
from unseen subjects

* Adapting the proposed solutions for other applications like
driver monitoring (for safety)
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