

Introduction

- Accurate dietary intake estimation is critical to support healthy eating
- Automated nutrition tracking requires a large, comprehensive dataset with diverse viewpoints, modalities, and food annotations
- Existing food image datasets don't satisfy these requirements, but what if we could generate such a perfect dataset?

Existing Datasets Are Limited

Comparison of existing dietary intake estimation datasets to ours. Mixed refers to whether multiple food item types are present in an image, and CL refers to calories, M to mass, P to protein, F to fat, and CB to carbohydrate.

NV-Synth

Dataset with 84k+ synthetically generated food images and associated dietary information and multimodal annotations

Depth Image

Semantic Segmentation Segmentation

Instance

Work	Dublic		Data						Dietary Info				
	Public -	# Img	# Items	Real	Mixed	# Angles	Depth	Annotation Masks	CL	Μ	P	F	CI
DepthCalorieCam	\checkmark	18	3	Y	N	1			\checkmark				
Menu-Match	\checkmark	646	41	Y	Y	1			\checkmark				
Im2Calories	\checkmark	50,374	201	Y	Y	1			\checkmark				
Computer vision-based food calorie estimation	\checkmark	2,978	160	Y	Ν	2			\checkmark	\checkmark			
Nutrition5k	\checkmark	5,006	555	Y	Y	4	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Measuring Calorie and Nutrition from Food Image		3000	8	Y	Y	2		\checkmark	\checkmark	\checkmark			
NV-Real (Ours)	\checkmark	889	45	Y	Y	4		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NV-Synth (Ours)	\checkmark	84,984	45	N	Y	12	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
				Met	hod	lolog	y						
ect Predictio	on												
Training Data							Р	red	lict	io	ns		

Model

InceptionV2

(pretrained on

Calories

NV-Real

Dataset with 889 real food images across 251 distinct dishes along with human annotated instance segmentation masks.

Angle 1

Angle 2

Experimental Results

(d) Amodal instance segmentation

Indirect Prediction

Synthetic

Depth

CL: 1609, M: 684, P: 65, F: 69, CB: 183 CL: 371, M: 156, P: 21, F: 18, CB: 32 CL: 706, M: 268, P: 39, F: 33, CB: 65 CL: 898, M: 337, P: 45, F: 40, CB: 90

Figure 8: Segmentation and prediction results of models trained with RGB input where CL refers to calories, M to mass, P to protein, F to fat, and CB to carbohydrate.

What is the best approach for dietary assessment?

Model (RGB)	Eval Dataset	Calories MAE	Mass MAE	Protein MAE	Fat MAE	Carb MAE
Semantic	NV-Synth	418.1	185.4	39.0	23.5	32.3
Instance	NV-Synth	430.9	191.4	39.3	24.1	34.4
Amodal Instance	NV-Synth	451.3	202.8	39.6	24.8	38.5
Direct Prediction (ImageNet)	NV-Synth	229.2	102.6	56.0	12.0	19.4*
Direct Prediction (Nutrition5k)	NV-Synth	128.7^{*}	77.2*	18.5*	9.1*	21.5

Table 3: Evaluation of model architectures using NV-Synth (RGB images) with the lowest MAE value for each column bolded with an * next to it.

When given perfect labels from simulation, direct prediction gives the best nutrition estimation

Does depth information improve model performance?

Model (RGBD)	Eval Dataset	Calories MAE	Mass MAE	Protein MAE	Fat MAE	Carb MAE
Semantic	NV-Synth	418.3	185.3	39.0	23.5	32.2
Instance	NV-Synth	432.9	194.1	39.1	24.1	35.2
Amodal Instance	NV-Synth	462.0	208.1	39.7	25.2	40.4
Direct Prediction (ImageNet)	NV-Synth	371.7	317.6	34.8	19.2*	25.2*
Direct Prediction (Nutrition5k)	NV-Synth	202.0^{*}	78.8 *	23.5*	30.1	33.3

Table 4: Investigation of depth information using NV-Synth (RGBD images) with the lowest MAE value for each column bolded with an * next to it.

The addition of depth information results in a worse

performance for direct prediction models

For indirect methods, depth does not make any significant differences

Acknowledgements

This work was supported by the National Research Council Canada (NRC) through the Aging in Place (AiP) Challenge Program, project number AiP-006. The authors also thank the graduate student partner in the Kinesiology and Health Sciences department Meagan Jackson and undergraduate research assistants Tanisha Nigam, Komal Vachhani, and Cosmo Zhao.

What is the impact of using synthetic data?

Model Description	Trained	Fine-Tuned	Calories MAE	Mass MAE	Protein MAE	Fat MAE	Carb MAE
(A) Direct Prediction (Nutrition5k)	NV-Synth	N/A	525.9	188.4	39.1	27.4	54.6
(B) Direct Prediction (ImageNet)	NV-Synth	NV-Real	229.8*	63.3*	24.6*	13.5*	70.8
(C) Semantic	NV-Real	N/A	442.7	221.0	40.1	23.0	$\boldsymbol{42.4^{*}}$

Table 8: Comparison of the best model from the three scenarios evaluated on the NV-Real dataset, with the lowest MAE value for each column bolded with an * next to it.

The best model is Direct Prediction (ImageNet) model trained on the NV-Synth train set and fine-tuned on the NV-Real train set